Sign in to follow this  
winsrp

need help on a simple math equation.

Recommended Posts

winsrp    277
Given X a number from -1 to 1...

I need a formula that returns me Y, also in the -1 to 1 range, but with the following pattern

[attachment=9470:pattern.png]

with the matches of
when x = -1 then y = -1
when x = -0.5 then y = -0.5
when x = 0 then y = 0
when x = 0.5 then y = 0.5
when x = 1 then y = 1

everything in between those values must follow the pattern

thanks in advance and regards,

Winsrp

Share this post


Link to post
Share on other sites
Brother Bob    10344
Without any particular constraint on the values (except the few selected points) other than it should follow the pattern, then y=x-A*sin(x*pi*2) gives a close match. The points match exactly, and tweak the constant A to match the desired curvature.

Share this post


Link to post
Share on other sites
winsrp    277
[img]http://public.gamedev.net//public/style_emoticons/default/mellow.png[/img] holy crap, that was fast!!, let me test it out a bit, and I'll let you know.

Share this post


Link to post
Share on other sites
Tristan85    221
@Brother Bob

Fascinating! I'd be quite interested to learn how you've managed to derive the formula from the OP's data. Could you perhaps elaborate a little?

Share this post


Link to post
Share on other sites
Legendre    985
[quote name='Brother Bob' timestamp='1339687417' post='4949176']
Without any particular constraint on the values (except the few selected points) other than it should follow the pattern, then y=x-A*sin(x*pi*2) gives a close match. The points match exactly, and tweak the constant A to match the desired curvature.
[/quote]

How did you come up with this so fast? O__o

Share this post


Link to post
Share on other sites
Brother Bob    10344
It's a mostly linear function on the form y=x. If you remove the linear component you have some periodic oscillating residual, which is close to a sine wave. The points where he constrained the curve just happened to coincide with the zero-crossing points of a sine wave; zero at x=-1, x=-0.5 and x=0. Edited by Brother Bob

Share this post


Link to post
Share on other sites
arkane7    213
Tristan

its not too hard to know why he got it. I was thinking along the lines of xsin(2*pi*x) but that didnt match at all (don't know why that sprang). by having -Asin(2*pi*x) it will be 0 at +- .5 and 1 (since sin(pi) and sin(2*pi) is 0 leaving x + 0, in Bobs original equation

when it is between 0 and .5 it will minus off in a sinusoidal fashion, the same as it does adding between .5 and 1

Share this post


Link to post
Share on other sites
szecs    2990
May I?
The OP:s graph looks like a wave. That means sine/cosine functions may be usable. But that is not going upwards. You can make in go upwards if you add a function that goes upward. Like a simple linear function. According to the OP's graph, an y=x graph would definitely go through all the points the OP wants.

So what if we add the y=x function to a sine function?
There's a problem with that, a sine function y=x won't intersect the points where the OP wants.
BUT: The frequency of a sine function can be controlled by it's argument. A greater multiplier of x as the argument means bigger frequency (or less wavelength), smaller means smaller.

The wavelength of a sine function is 2*PI.

So to decrease it to the desired 1 unit of wavelength (wavelength is the up and down of a wave, that's repeated), we have to increase the argument's multiplier. That means we have to use 2*PI. (If you use a calculator, you can see that if you insert the appropriate x coordinates, you get the desired zeros for the sine, and the desired points in the final function).

One problem remains. Sine goes up first, not down. So, we can multiply the sine part of the final function with -1.

So, you got your equation.

Sorry, a drunk post [img]http://public.gamedev.net//public/style_emoticons/default/wacko.png[/img]



Anyway, manipulating sine/cosine function is quite easy to visualize.
If you multiple sine/cosine with a function, the "signed height of the bumps" will touch the function you multiply sine/cosine with.
If you add a function to sine/cosine, it's like sine/cosine sits on top of the function.

I hope that's clear, and sorry for posting drunk.. Edited by szecs

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

Sign in to follow this