Followers 0

# OpenGL 100% dumb questions about opengl lighting

## 6 posts in this topic

Well, i was setting up an hardcoded cornell box scene with opengl because i want to learn glsl and hopefully write a fragment shader path tracer

so i copied [url="http://www.graphics.cornell.edu/online/box/data.html"]these[/url] data ([url="http://pastebin.com/w3gmZf8x"]here[/url]'s the code), but i had a result i didn't expect, and i don't understand

[img]http://img213.imageshack.us/img213/4859/cb1y.png[/img]

There's no reason for having an enlighted left wall and such a dark right wall.. also that floor shouldnt be so dark if the bottom of the left wall is still enlighted

But if i invert floor and right wall normal direction (right wall normal = (-1, 0, 0) and floor normal = (0, -1, 0)) i get something similiar to what i expected

[img]http://img3.imageshack.us/img3/8167/cb2v.png[/img]

i feel like i'm missing something :/ Edited by tuccio
0

##### Share on other sites
The light parameters are 4-dimensional vectors, not 3-dimensional vectors as in your code. OpenGL is currently reading the fourth component from outside the corresponding arrays.
1

##### Share on other sites
[quote name='Brother Bob' timestamp='1340976491' post='4953950']
The light parameters are 4-dimensional vectors, not 3-dimensional vectors as in your code. OpenGL is currently reading the fourth component from outside the corresponding arrays.
[/quote]oh, thank you

that helped, and now it works fine if i set position's w component to 1 (so that the light propagates in all directions), as you can see:

[img]http://img88.imageshack.us/img88/783/cb3p.png[/img]

but if i put w to 0 to get a directional light, this is what i get:

[img]http://img151.imageshack.us/img151/431/cb4.png[/img]

the code now looks like [url="http://pastebin.com/i4XxVjxW"]this[/url]

i guess i'm still missing something :/ Edited by tuccio
0

##### Share on other sites
What do you think is wrong with the directional light? If the light is coming from the upper left in the image, then the bottom and right faces are lit since they face the light, and the right and top faces are not lit since they are not facing the light.

I haven't looked much into the exact details of where the light is pointing, where the view point is facing, and which wall is where though, so I don't know for sure if the light really is supposed to come from the upper left. If the incorrect faces are lit, then make sure that the normals are in fact correct, and that you are viewing from the correct place.
0

##### Share on other sites
[quote name='Brother Bob' timestamp='1340979365' post='4953961']
What do you think is wrong with the directional light? If the light is coming from the upper left in the image, then the bottom and right faces are lit since they face the light, and the right and top faces are not lit since they are not facing the light.

I haven't looked much into the exact details of where the light is pointing, where the view point is facing, and which wall is where though, so I don't know for sure if the light really is supposed to come from the upper left. If the incorrect faces are lit, then make sure that the normals are in fact correct, and that you are viewing from the correct place.
[/quote]the light is in the middle (sort of) of the room, actually closer to the ceiling than the floor, and the direction points towards the floor

also, changing the direction of the light and the spot cutoff doesnt change the result, and this is weird too
0

##### Share on other sites
You have a directional light, not a positional one. Spotlight settings only work for positional lights. Set the w-component of the position to 1 instead.

Also, don't expect very good results. Lighting is calculated per vertex so you need to define a much higher resolution cube to have some sensible results.
1

##### Share on other sites
[quote name='Brother Bob' timestamp='1340990970' post='4954010']
You have a directional light, not a positional one. Spotlight settings only work for positional lights. Set the w-component of the position to 1 instead.

Also, don't expect very good results. Lighting is calculated per vertex so you need to define a much higher resolution cube to have some sensible results.
[/quote]yup i think i understand

and yes, i didn't expect great results, i'm using a low tesselated cube because, as i said, i want to learn glsl and use fragment shaders to compute direct and indirect lighting

thank you again
0

## Create an account

Register a new account

Followers 0

• ### Similar Content

• Hello, I have been working on SH Irradiance map rendering, and I have been using a GLSL pixel shader to render SH irradiance to 2D irradiance maps for my static objects. I already have it working with 9 3D textures so far for the first 9 SH functions.
In my GLSL shader, I have to send in 9 SH Coefficient 3D Texures that use RGBA8 as a pixel format. RGB being used for the coefficients for red, green, and blue, and the A for checking if the voxel is in use (for the solidification shader of course ;)).
My problem is, I want to knock this number of textures down to something like 4 or 5. Getting even lower would be a godsend. This is because I eventually plan on adding more SH Coefficient 3D Textures for other parts of the game map (such as inside rooms, as opposed to the outside), to circumvent irradiance probe bleeding. I don't want to reach the 32 texture limit too soon. Also, I figure that it would be a LOT faster.
Is there a way I could, say, store 2 sets of SH Coefficients for 2 SH functions inside a texture with RGBA16 pixels? If so, how would I extract them from inside GLSL? Let me know if you have any suggestions ^^.
• By DaniDesu
#include "MyEngine.h" int main() { MyEngine myEngine; myEngine.run(); return 0; } MyEngine.h
#pragma once #include "MyWindow.h" #include "MyShaders.h" #include "MyShapes.h" class MyEngine { private: GLFWwindow * myWindowHandle; MyWindow * myWindow; public: MyEngine(); ~MyEngine(); void run(); }; MyEngine.cpp
#pragma once #include <glad\glad.h> #include <GLFW\glfw3.h> class MyWindow { private: GLFWwindow * windowHandle; int windowWidth; int windowHeight; const char * windowTitle; public: MyWindow(int windowWidth, int windowHeight, const char * windowTitle); ~MyWindow(); GLFWwindow * getWindowHandle(); void createWindow(); void MyWindow::destroyWindow(); }; MyWindow.cpp
#include "MyWindow.h" MyWindow::MyWindow(int windowWidth, int windowHeight, const char * windowTitle) { this->windowHandle = NULL; this->windowWidth = windowWidth; this->windowWidth = windowWidth; this->windowHeight = windowHeight; this->windowTitle = windowTitle; glfwInit(); } MyWindow::~MyWindow() { } GLFWwindow * MyWindow::getWindowHandle() { return this->windowHandle; } void MyWindow::createWindow() { // Use OpenGL 3.3 and GLSL 3.3 glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3); glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3); // Limit backwards compatibility glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE); glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE); // Prevent resizing window glfwWindowHint(GLFW_RESIZABLE, GL_FALSE); // Create window this->windowHandle = glfwCreateWindow(this->windowWidth, this->windowHeight, this->windowTitle, NULL, NULL); glfwMakeContextCurrent(this->windowHandle); } void MyWindow::destroyWindow() { glfwTerminate(); } MyShapes.h
#pragma once #include <glad\glad.h> #include <GLFW\glfw3.h> class MyShapes { public: MyShapes(); ~MyShapes(); GLuint & drawTriangle(float coordinates[]); }; MyShapes.cpp
#include "MyShapes.h" MyShapes::MyShapes() { } MyShapes::~MyShapes() { } GLuint & MyShapes::drawTriangle(float coordinates[]) { GLuint vertexBufferObject{}; GLuint vertexArrayObject{}; // Create a VAO glGenVertexArrays(1, &vertexArrayObject); glBindVertexArray(vertexArrayObject); // Send vertices to the GPU glGenBuffers(1, &vertexBufferObject); glBindBuffer(GL_ARRAY_BUFFER, vertexBufferObject); glBufferData(GL_ARRAY_BUFFER, sizeof(coordinates), coordinates, GL_STATIC_DRAW); // Dertermine the interpretation of the array buffer glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3*sizeof(float), (void *)0); glEnableVertexAttribArray(0); // Unbind the buffers glBindBuffer(GL_ARRAY_BUFFER, 0); glBindVertexArray(0); return vertexArrayObject; } MyFileHandler.h
#pragma once #include <cstdio> #include <cstdlib> class MyFileHandler { private: const char * fileName; unsigned long fileSize; void setFileSize(); public: MyFileHandler(const char * fileName); ~MyFileHandler(); unsigned long getFileSize(); const char * readFile(); }; MyFileHandler.cpp
#include "MyFileHandler.h" MyFileHandler::MyFileHandler(const char * fileName) { this->fileName = fileName; this->setFileSize(); } MyFileHandler::~MyFileHandler() { } void MyFileHandler::setFileSize() { FILE * fileHandle = NULL; fopen_s(&fileHandle, this->fileName, "rb"); fseek(fileHandle, 0L, SEEK_END); this->fileSize = ftell(fileHandle); rewind(fileHandle); fclose(fileHandle); return; } unsigned long MyFileHandler::getFileSize() { return (this->fileSize); } const char * MyFileHandler::readFile() { char * buffer = (char *)malloc((this->fileSize)+1); FILE * fileHandle = NULL; fopen_s(&fileHandle, this->fileName, "rb"); fread(buffer, this->fileSize, sizeof(char), fileHandle); fclose(fileHandle); buffer[this->fileSize] = '\0'; return buffer; } VertexShader.glsl
#version 330 core layout (location = 0) vec3 VertexPositions; void main() { gl_Position = vec4(VertexPositions, 1.0f); } FragmentShader.glsl
#version 330 core out vec4 FragmentColor; void main() { FragmentColor = vec4(1.0f, 0.0f, 0.0f, 1.0f); } I am attempting to create a simple engine/graphics utility using some object-oriented paradigms. My first goal is to get some output from my engine, namely, a simple red triangle.
For this goal, the MyShapes class will be responsible for defining shapes such as triangles, polygons etc. Currently, there is only a drawTriangle() method implemented, because I first wanted to see whether it works or not before attempting to code other shape drawing methods.
The constructor of the MyEngine class creates a GLFW window (GLAD is also initialized here to load all OpenGL functionality), and the myEngine.run() method in Main.cpp is responsible for firing up the engine. In this run() method, the shaders get loaded from files via the help of my FileHandler class. The vertices for the triangle are processed by the myShapes.drawTriangle() method where a vertex array object, a vertex buffer object and vertrex attributes are set for this purpose.
The while loop in the run() method should be outputting me the desired red triangle, but all I get is a grey window area. Why?
(Note: I am aware that this code is not using any good software engineering practices (e.g. exceptions, error handling). I am planning to implement them later, once I get the hang of OpenGL.)

• By KarimIO
EDIT: I thought this was restricted to Attribute-Created GL contexts, but it isn't, so I rewrote the post.
Hey guys, whenever I call SwapBuffers(hDC), I get a crash, and I get a "Too many posts were made to a semaphore." from Windows as I call SwapBuffers. What could be the cause of this?
Update: No crash occurs if I don't draw, just clear and swap.
static PIXELFORMATDESCRIPTOR pfd = // pfd Tells Windows How We Want Things To Be { sizeof(PIXELFORMATDESCRIPTOR), // Size Of This Pixel Format Descriptor 1, // Version Number PFD_DRAW_TO_WINDOW | // Format Must Support Window PFD_SUPPORT_OPENGL | // Format Must Support OpenGL PFD_DOUBLEBUFFER, // Must Support Double Buffering PFD_TYPE_RGBA, // Request An RGBA Format 32, // Select Our Color Depth 0, 0, 0, 0, 0, 0, // Color Bits Ignored 0, // No Alpha Buffer 0, // Shift Bit Ignored 0, // No Accumulation Buffer 0, 0, 0, 0, // Accumulation Bits Ignored 24, // 24Bit Z-Buffer (Depth Buffer) 0, // No Stencil Buffer 0, // No Auxiliary Buffer PFD_MAIN_PLANE, // Main Drawing Layer 0, // Reserved 0, 0, 0 // Layer Masks Ignored }; if (!(hDC = GetDC(windowHandle))) return false; unsigned int PixelFormat; if (!(PixelFormat = ChoosePixelFormat(hDC, &pfd))) return false; if (!SetPixelFormat(hDC, PixelFormat, &pfd)) return false; hRC = wglCreateContext(hDC); if (!hRC) { std::cout << "wglCreateContext Failed!\n"; return false; } if (wglMakeCurrent(hDC, hRC) == NULL) { std::cout << "Make Context Current Second Failed!\n"; return false; } ... // OGL Buffer Initialization glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT); glBindVertexArray(vao); glUseProgram(myprogram); glDrawElements(GL_TRIANGLES, indexCount, GL_UNSIGNED_SHORT, (void *)indexStart); SwapBuffers(GetDC(window_handle));
• By Tchom
Hey devs!

I've been working on a OpenGL ES 2.0 android engine and I have begun implementing some simple (point) lighting. I had something fairly simple working, so I tried to get fancy and added color-tinting light. And it works great... with only one or two lights. Any more than that, the application drops about 15 frames per light added (my ideal is at least 4 or 5). I know implementing lighting is expensive, I just didn't think it was that expensive. I'm fairly new to the world of OpenGL and GLSL, so there is a good chance I've written some crappy shader code. If anyone had any feedback or tips on how I can optimize this code, please let me know.

uniform mat4 u_MVPMatrix; uniform mat4 u_MVMatrix; attribute vec4 a_Position; attribute vec3 a_Normal; attribute vec2 a_TexCoordinate; varying vec3 v_Position; varying vec3 v_Normal; varying vec2 v_TexCoordinate; void main() { v_Position = vec3(u_MVMatrix * a_Position); v_TexCoordinate = a_TexCoordinate; v_Normal = vec3(u_MVMatrix * vec4(a_Normal, 0.0)); gl_Position = u_MVPMatrix * a_Position; } Fragment Shader
precision mediump float; uniform vec4 u_LightPos["+numLights+"]; uniform vec4 u_LightColours["+numLights+"]; uniform float u_LightPower["+numLights+"]; uniform sampler2D u_Texture; varying vec3 v_Position; varying vec3 v_Normal; varying vec2 v_TexCoordinate; void main() { gl_FragColor = (texture2D(u_Texture, v_TexCoordinate)); float diffuse = 0.0; vec4 colourSum = vec4(1.0); for (int i = 0; i < "+numLights+"; i++) { vec3 toPointLight = vec3(u_LightPos[i]); float distance = length(toPointLight - v_Position); vec3 lightVector = normalize(toPointLight - v_Position); float diffuseDiff = 0.0; // The diffuse difference contributed from current light diffuseDiff = max(dot(v_Normal, lightVector), 0.0); diffuseDiff = diffuseDiff * (1.0 / (1.0 + ((1.0-u_LightPower[i])* distance * distance))); //Determine attenuatio diffuse += diffuseDiff; gl_FragColor.rgb *= vec3(1.0) / ((vec3(1.0) + ((vec3(1.0) - vec3(u_LightColours[i]))*diffuseDiff))); //The expensive part } diffuse += 0.1; //Add ambient light gl_FragColor.rgb *= diffuse; } Am I making any rookie mistakes? Or am I just being unrealistic about what I can do? Thanks in advance
• By yahiko00
Hi,
Not sure to post at the right place, if not, please forgive me...
For a game project I am working on, I would like to implement a 2D starfield as a background.
I do not want to deal with static tiles, since I plan to slowly animate the starfield. So, I am trying to figure out how to generate a random starfield for the entire map.
I feel that using a uniform distribution for the stars will not do the trick. Instead I would like something similar to the screenshot below, taken from the game Star Wars: Empire At War (all credits to Lucasfilm, Disney, and so on...).

Is there someone who could have an idea of a distribution which could result in such a starfield?
Any insight would be appreciated

• 28
• 12
• 11
• 31
• 20