Sign in to follow this  
synthetix

OpenGL Problem with matrix math for camera

Recommended Posts

I've been struggling with getting the matrix math down for translating and rotating a camera through 3D space. I've got an OpenGL program that places the camera in the middle of a box at 0,0,0. I want to be able to both translate and rotate (first person shooter-style) through the box using the keyboard. I've got it working except I can't translate/rotate and keep the coordinates the same for both (only one or the other). For example, I can move through the box just fine (using the WSAD keys), but if I rotate my view to the left by 90 degrees, "forward" now goes to the right.

The problem is, I multiply the modelview matrix by the translation matrix first, and then by the rotation matrix. This works except that by rotating the scene 90 degrees, it throws the translation coordinates off by 90 degrees! In other words, translation occurs under the assumption that the scene has [i]not been rotated.[/i]

I only need to rotate the scene on the Y axis, Wolfenstein/Doom style. Here is my code so far:

[CODE]
mat4x4 mat_model,mat_tran,mat_rot,mat_temp;

mat4x4_identity(mat_model);
mat4x4_identity(mat_tran);
mat4x4_identity(mat_rot);
mat4x4_identity(mat_temp);

//create translation matrix
mat4x4_translate(mat_tran, strafe, 0.0, dolly);

//create rotation matrix
mat4x4_rotate_Y(mat_rot,mat_temp,-rot_y);

//apply the matrices to the modelview matrix
mat4x4_mul(mat_temp,mat_tran,mat_rot);
mat4x4_dup(mat_model,mat_temp);


[/CODE]

What am I missing?

Share this post


Link to post
Share on other sites
[quote name='Synthetix' timestamp='1341224731' post='4954855']
I can move through the box just fine (using the WSAD keys), but if I rotate my view to the left by 90 degrees, "forward" now goes to the right.
[/quote]

"Forward" should modify a direction vector in local coordinates, which can then be transformed by the rotation matrix to generate the approprite translation vector.

Share this post


Link to post
Share on other sites
[quote name='Goran Milovanovic' timestamp='1341268329' post='4955084']
"Forward" should modify a direction vector in local coordinates, which can then be transformed by the rotation matrix to generate the approprite translation vector.
[/quote]

Thanks. I tried that, but now the scene only rotates around the origin (0,0,0). Actually, this gives the same result as pre-multiplying the rotation/translation matrices.

Let me just confirm: the "eye point" is the X,Y (assuming Z-up) coordinates of the camera, looking down, correct? And the "look at" point, or the camera's orientation, is the eye point vector multiplied by the rotation matrix, yes?

I'm sorry I can't be more helpful. I am really having a hard time grasping this. Edited by Synthetix

Share this post


Link to post
Share on other sites
[quote name='Synthetix' timestamp='1341285643' post='4955150']

Thanks. I tried that, but now the scene only rotates around the origin (0,0,0). Actually, this gives the same result as pre-multiplying the rotation/translation matrices.
[/quote]

It sounds like you're not translating other objects in the scene. You have to transform everything in your scene to create the illusion of a "camera" moving through space. Typically, you would have a 4x4 transform matrix that describes orientation/translation of the camera. You would also have a 4x4 matrix for every object in the scene. Then, to create the illusion of a camera moving through space, you have to transform the matrix of each and every object, by the inverse matrix of the camera.

Why inverse? -> In the real world, you would have an actual camera that you would rotate left (if you wanted to see the portion of the scene on the left). However, in the OpenGL world, in order to look left, you have to "rotate the world" to the right, creating the illusion of a camera that is rotating to the left.

I don't know if you had the chance to research this in more depth, but I think this page should still be helpful: http://www.opengl.org/wiki/Viewing_and_Transformations

[quote name='Synthetix' timestamp='1341285643' post='4955150']
Let me just confirm: the "eye point" is the X,Y (assuming Z-up) coordinates of the camera, looking down, correct? And the "look at" point, or the camera's orientation, is the eye point vector multiplied by the rotation matrix, yes
[/quote]

In the context of gluLookAt? Both the "eye point" and the "look at point" should be vectors in object/world space coordinates.

Share this post


Link to post
Share on other sites
Okay, I can grab both the camera's current position vector and direction (the direction it's pointing) vector from the modelview matrix. Assuming I have this data on each loop iteration, how do I get the camera to rotate around its current position as opposed to 0,0,0? I have been reading a lot of tutorials that say you have to rotate the direction vector by the rotation matrix used to rotate the scene so when you apply the translation, it goes in the correct direction. I think I understand that part perfectly well, as I'm able to derive the forward/back direction vector from the modelview matrix, normalize it, and add it to the translation matrix along with the speed value. I do the same for the strafe vector, which is the cross product of the fwd/back vector and the Y direction (currently -1.0).

Example:

[CODE]
//calculate strafe vector using cross product of Z and Y
vec4 direction_strafe;
vec4_cross(direction_strafe,direction_move,(vec4){0.0,-1.0,0.0,0.0});

camera_position[z] += (direction_move[z] * speed); //WS keys (fwd/back)
camera_position[x] += (direction_strafe[x] * speed); //AD keys (strafe)

//construct translation matrix
mat4x4 translate;
mat4x4_translate(translate, camera_position[x], 0.0, camera_position[z]); //Y is 0.0 since we never go up/down
[/CODE]

I then multiply the translation matrix by the rotation matrix and drop the result into the modelview matrix. Problem is, when I rotate the scene, it is always rotating around 0,0,0 so when I move around, the camera always rotates around the world's origin and not its own. Edited by Synthetix

Share this post


Link to post
Share on other sites
[quote name='dpadam450' timestamp='1341507089' post='4956025']
direction_move should be calculated by using the sin/cos of the camera angle. Looks like you have a cross product calculating it?
[/quote]

I'm calculating the strafe vector using the cross product of the foward (Z) direction and the up (Y) direction. So, the strafe vector is basically 90 degrees from the forward vector. I then add this to the translation matrix when the user presses one of the WSAD move keys, and then multiply the modelview matrix with it before rendering the scene.

I'm using a rotation matrix which contains the rotation angle when the user rotates the camera view left/right on the Y/up axis.

All of this works perfectly for either movement or rotation only, but I can't get the two working together! [img]http://public.gamedev.net//public/style_emoticons/default/sad.png[/img]

Share this post


Link to post
Share on other sites
Did you look at Goran Milovanovic's second post about using the inverse?

You've defined your camera transformation as:
Translate * Rotation
Which means your view matrix should be:
Rotation' * Translation' (i.e. the inverse)

So modifying your original code:

[source lang="cpp"]
mat4x4 invTran_mat, invRot_mat, temp_mat, modelView_mat;

mat4x4_identity(temp_mat);
mat4x4_identity(invTran_mat);

// Inverse of your original rotation matrix
mat4x4_rotate_Y(invRot_mat, temp_mat, rot_y);

// Inverse of your original translation matrix
mat4x4_translate(invTran_mat, -strafe, 0.0, -dolly);

//apply the matrices to the model matrix
mat4x4_mul(temp_mat, invRot_mat, invTran_mat);
mat4x4_mul(modelView_mat, temp_mat, model_mat);
[/source] Edited by scniton

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

Sign in to follow this  

  • Announcements

  • Forum Statistics

    • Total Topics
      628370
    • Total Posts
      2982300
  • Similar Content

    • By test opty
      Hi all,
       
      I'm starting OpenGL using a tut on the Web. But at this point I would like to know the primitives needed for creating a window using OpenGL. So on Windows and using MS VS 2017, what is the simplest code required to render a window with the title of "First Rectangle", please?
       
       
    • By DejayHextrix
      Hi, New here. 
      I need some help. My fiance and I like to play this mobile game online that goes by real time. Her and I are always working but when we have free time we like to play this game. We don't always got time throughout the day to Queue Buildings, troops, Upgrades....etc.... 
      I was told to look into DLL Injection and OpenGL/DirectX Hooking. Is this true? Is this what I need to learn? 
      How do I read the Android files, or modify the files, or get the in-game tags/variables for the game I want? 
      Any assistance on this would be most appreciated. I been everywhere and seems no one knows or is to lazy to help me out. It would be nice to have assistance for once. I don't know what I need to learn. 
      So links of topics I need to learn within the comment section would be SOOOOO.....Helpful. Anything to just get me started. 
      Thanks, 
      Dejay Hextrix 
    • By mellinoe
      Hi all,
      First time poster here, although I've been reading posts here for quite a while. This place has been invaluable for learning graphics programming -- thanks for a great resource!
      Right now, I'm working on a graphics abstraction layer for .NET which supports D3D11, Vulkan, and OpenGL at the moment. I have implemented most of my planned features already, and things are working well. Some remaining features that I am planning are Compute Shaders, and some flavor of read-write shader resources. At the moment, my shaders can just get simple read-only access to a uniform (or constant) buffer, a texture, or a sampler. Unfortunately, I'm having a tough time grasping the distinctions between all of the different kinds of read-write resources that are available. In D3D alone, there seem to be 5 or 6 different kinds of resources with similar but different characteristics. On top of that, I get the impression that some of them are more or less "obsoleted" by the newer kinds, and don't have much of a place in modern code. There seem to be a few pivots:
      The data source/destination (buffer or texture) Read-write or read-only Structured or unstructured (?) Ordered vs unordered (?) These are just my observations based on a lot of MSDN and OpenGL doc reading. For my library, I'm not interested in exposing every possibility to the user -- just trying to find a good "middle-ground" that can be represented cleanly across API's which is good enough for common scenarios.
      Can anyone give a sort of "overview" of the different options, and perhaps compare/contrast the concepts between Direct3D, OpenGL, and Vulkan? I'd also be very interested in hearing how other folks have abstracted these concepts in their libraries.
    • By aejt
      I recently started getting into graphics programming (2nd try, first try was many years ago) and I'm working on a 3d rendering engine which I hope to be able to make a 3D game with sooner or later. I have plenty of C++ experience, but not a lot when it comes to graphics, and while it's definitely going much better this time, I'm having trouble figuring out how assets are usually handled by engines.
      I'm not having trouble with handling the GPU resources, but more so with how the resources should be defined and used in the system (materials, models, etc).
      This is my plan now, I've implemented most of it except for the XML parts and factories and those are the ones I'm not sure of at all:
      I have these classes:
      For GPU resources:
      Geometry: holds and manages everything needed to render a geometry: VAO, VBO, EBO. Texture: holds and manages a texture which is loaded into the GPU. Shader: holds and manages a shader which is loaded into the GPU. For assets relying on GPU resources:
      Material: holds a shader resource, multiple texture resources, as well as uniform settings. Mesh: holds a geometry and a material. Model: holds multiple meshes, possibly in a tree structure to more easily support skinning later on? For handling GPU resources:
      ResourceCache<T>: T can be any resource loaded into the GPU. It owns these resources and only hands out handles to them on request (currently string identifiers are used when requesting handles, but all resources are stored in a vector and each handle only contains resource's index in that vector) Resource<T>: The handles given out from ResourceCache. The handles are reference counted and to get the underlying resource you simply deference like with pointers (*handle).  
      And my plan is to define everything into these XML documents to abstract away files:
      Resources.xml for ref-counted GPU resources (geometry, shaders, textures) Resources are assigned names/ids and resource files, and possibly some attributes (what vertex attributes does this geometry have? what vertex attributes does this shader expect? what uniforms does this shader use? and so on) Are reference counted using ResourceCache<T> Assets.xml for assets using the GPU resources (materials, meshes, models) Assets are not reference counted, but they hold handles to ref-counted resources. References the resources defined in Resources.xml by names/ids. The XMLs are loaded into some structure in memory which is then used for loading the resources/assets using factory classes:
      Factory classes for resources:
      For example, a texture factory could contain the texture definitions from the XML containing data about textures in the game, as well as a cache containing all loaded textures. This means it has mappings from each name/id to a file and when asked to load a texture with a name/id, it can look up its path and use a "BinaryLoader" to either load the file and create the resource directly, or asynchronously load the file's data into a queue which then can be read from later to create the resources synchronously in the GL context. These factories only return handles.
      Factory classes for assets:
      Much like for resources, these classes contain the definitions for the assets they can load. For example, with the definition the MaterialFactory will know which shader, textures and possibly uniform a certain material has, and with the help of TextureFactory and ShaderFactory, it can retrieve handles to the resources it needs (Shader + Textures), setup itself from XML data (uniform values), and return a created instance of requested material. These factories return actual instances, not handles (but the instances contain handles).
       
       
      Is this a good or commonly used approach? Is this going to bite me in the ass later on? Are there other more preferable approaches? Is this outside of the scope of a 3d renderer and should be on the engine side? I'd love to receive and kind of advice or suggestions!
      Thanks!
    • By nedondev
      I 'm learning how to create game by using opengl with c/c++ coding, so here is my fist game. In video description also have game contain in Dropbox. May be I will make it better in future.
      Thanks.
  • Popular Now