Sign in to follow this  
Nick of ZA

OpenGL Transform matrix application order

Recommended Posts

I'm building my first OpenGL demo to incorporate into the game I'm writing. I wonder if you gentlefolk might help clarify the transformation process for me. I have a basic vertex and fragment shaders up and running already.

Here's what I see as the method for getting 3D objects perspective-transformed to screen:



On update:

Create the camera matrix: c = camRotation * camTranslation
Create the view matrix by inverting the camera matrix: v = c^-1
Create the projection matrix using the standard perspective projection matrix terms
Create view-projection matrix: vp = p * v

For each entity
Create a model matrix using entity world position, rotation, and scale values
Multiply this specific entity's world transform matrix (the model matrix): mvp = vp * m
Set mvp as a uniform for vertex shader

[*]Please offer your advice on whether or not the above structure is sensible.
[*]What options do I have to reduce the number of draw calls? Merging static geometry into a single vertex list using a common texture atlas seems to be the only option?
[*]Re the MVP matrix above, why do some sources present the final matrix value as -1, and others as 1? What should I use?
Any other tips, suggestions on this structure welcome.

Primary references:

[url=""]OpenGL wiki page on viewing and transformations[/url]
[url=""]Joe Groff's tutorial on transformation and projection[/url] Edited by NickWiggill

Share this post

Link to post
Share on other sites
The order of the projection-view matrix is wrong. It shall be Proj*view. So the MVP matrix would be P*V*M. Some of this is done in the shader, some is not. It depends on the complexity of your design. The shader is much faster to compute this, but if a result stays the same for every pixel, then you might as well do it in the main application before sending it to the shader. You don't need a "window matrix", it is included in the projection matrix.

The vertex shader now need to compute PVM*v, for each vertex 'v'.

Share this post

Link to post
Share on other sites
Hi larspensjo,

Thanks for clarifying, I've updated the question by removing the reference to the "window" matrix.

Also could you confirm the order then, for matrix multiplication:
[source lang="java"]
modelViewMatrix = viewMatrix * modelMatrix; //??
modelViewProjectionMatrix = projectionMatrix * modelViewMatrix; //??[/source]

...Assuming matrix mul() ordering is thisMatrix * otherMatrix? Edited by NickWiggill

Share this post

Link to post
Share on other sites
[quote name='NickWiggill' timestamp='1341601398' post='4956430']
Hi larspensjo,

Thanks for clarifying, I've updated the question by removing the reference to the "window" matrix.

Also could you confirm the order then, for matrix multiplication:
[source lang="java"]
modelViewMatrix = viewMatrix * modelMatrix; //??
modelViewProjectionMatrix = projectionMatrix * modelViewMatrix; //??[/source]

...Assuming matrix mul() ordering is thisMatrix * otherMatrix?
Confirmed. If you are using C++, I recommend the package [url=""]glm[/url]. It is a matrix manipulation package, with a syntax close to the shader language.

Share this post

Link to post
Share on other sites
Ah, many thanks. Updated again with the multiplication order. This should allow me to proceed. I hope you have a good weekend too [img][/img]

Share this post

Link to post
Share on other sites
Personally, I find this reference helpful: [url=""][/url]

You could split up the modelview matrix into two parts, and so you would transform your vertices using your model matrix first, and then by your view matrix.

I like thinking in terms which order the transformations are applied, then afterwards rearrange things to match the multiplication order I am working with (i.e. "pre" or "post" multiplication.) Edited by scniton

Share this post

Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

Sign in to follow this  

  • Announcements

  • Forum Statistics

    • Total Topics
    • Total Posts
  • Similar Content

    • By test opty
      Hi all,
      I'm starting OpenGL using a tut on the Web. But at this point I would like to know the primitives needed for creating a window using OpenGL. So on Windows and using MS VS 2017, what is the simplest code required to render a window with the title of "First Rectangle", please?
    • By DejayHextrix
      Hi, New here. 
      I need some help. My fiance and I like to play this mobile game online that goes by real time. Her and I are always working but when we have free time we like to play this game. We don't always got time throughout the day to Queue Buildings, troops, Upgrades....etc.... 
      I was told to look into DLL Injection and OpenGL/DirectX Hooking. Is this true? Is this what I need to learn? 
      How do I read the Android files, or modify the files, or get the in-game tags/variables for the game I want? 
      Any assistance on this would be most appreciated. I been everywhere and seems no one knows or is to lazy to help me out. It would be nice to have assistance for once. I don't know what I need to learn. 
      So links of topics I need to learn within the comment section would be SOOOOO.....Helpful. Anything to just get me started. 
      Dejay Hextrix 
    • By mellinoe
      Hi all,
      First time poster here, although I've been reading posts here for quite a while. This place has been invaluable for learning graphics programming -- thanks for a great resource!
      Right now, I'm working on a graphics abstraction layer for .NET which supports D3D11, Vulkan, and OpenGL at the moment. I have implemented most of my planned features already, and things are working well. Some remaining features that I am planning are Compute Shaders, and some flavor of read-write shader resources. At the moment, my shaders can just get simple read-only access to a uniform (or constant) buffer, a texture, or a sampler. Unfortunately, I'm having a tough time grasping the distinctions between all of the different kinds of read-write resources that are available. In D3D alone, there seem to be 5 or 6 different kinds of resources with similar but different characteristics. On top of that, I get the impression that some of them are more or less "obsoleted" by the newer kinds, and don't have much of a place in modern code. There seem to be a few pivots:
      The data source/destination (buffer or texture) Read-write or read-only Structured or unstructured (?) Ordered vs unordered (?) These are just my observations based on a lot of MSDN and OpenGL doc reading. For my library, I'm not interested in exposing every possibility to the user -- just trying to find a good "middle-ground" that can be represented cleanly across API's which is good enough for common scenarios.
      Can anyone give a sort of "overview" of the different options, and perhaps compare/contrast the concepts between Direct3D, OpenGL, and Vulkan? I'd also be very interested in hearing how other folks have abstracted these concepts in their libraries.
    • By aejt
      I recently started getting into graphics programming (2nd try, first try was many years ago) and I'm working on a 3d rendering engine which I hope to be able to make a 3D game with sooner or later. I have plenty of C++ experience, but not a lot when it comes to graphics, and while it's definitely going much better this time, I'm having trouble figuring out how assets are usually handled by engines.
      I'm not having trouble with handling the GPU resources, but more so with how the resources should be defined and used in the system (materials, models, etc).
      This is my plan now, I've implemented most of it except for the XML parts and factories and those are the ones I'm not sure of at all:
      I have these classes:
      For GPU resources:
      Geometry: holds and manages everything needed to render a geometry: VAO, VBO, EBO. Texture: holds and manages a texture which is loaded into the GPU. Shader: holds and manages a shader which is loaded into the GPU. For assets relying on GPU resources:
      Material: holds a shader resource, multiple texture resources, as well as uniform settings. Mesh: holds a geometry and a material. Model: holds multiple meshes, possibly in a tree structure to more easily support skinning later on? For handling GPU resources:
      ResourceCache<T>: T can be any resource loaded into the GPU. It owns these resources and only hands out handles to them on request (currently string identifiers are used when requesting handles, but all resources are stored in a vector and each handle only contains resource's index in that vector) Resource<T>: The handles given out from ResourceCache. The handles are reference counted and to get the underlying resource you simply deference like with pointers (*handle).  
      And my plan is to define everything into these XML documents to abstract away files:
      Resources.xml for ref-counted GPU resources (geometry, shaders, textures) Resources are assigned names/ids and resource files, and possibly some attributes (what vertex attributes does this geometry have? what vertex attributes does this shader expect? what uniforms does this shader use? and so on) Are reference counted using ResourceCache<T> Assets.xml for assets using the GPU resources (materials, meshes, models) Assets are not reference counted, but they hold handles to ref-counted resources. References the resources defined in Resources.xml by names/ids. The XMLs are loaded into some structure in memory which is then used for loading the resources/assets using factory classes:
      Factory classes for resources:
      For example, a texture factory could contain the texture definitions from the XML containing data about textures in the game, as well as a cache containing all loaded textures. This means it has mappings from each name/id to a file and when asked to load a texture with a name/id, it can look up its path and use a "BinaryLoader" to either load the file and create the resource directly, or asynchronously load the file's data into a queue which then can be read from later to create the resources synchronously in the GL context. These factories only return handles.
      Factory classes for assets:
      Much like for resources, these classes contain the definitions for the assets they can load. For example, with the definition the MaterialFactory will know which shader, textures and possibly uniform a certain material has, and with the help of TextureFactory and ShaderFactory, it can retrieve handles to the resources it needs (Shader + Textures), setup itself from XML data (uniform values), and return a created instance of requested material. These factories return actual instances, not handles (but the instances contain handles).
      Is this a good or commonly used approach? Is this going to bite me in the ass later on? Are there other more preferable approaches? Is this outside of the scope of a 3d renderer and should be on the engine side? I'd love to receive and kind of advice or suggestions!
    • By nedondev
      I 'm learning how to create game by using opengl with c/c++ coding, so here is my fist game. In video description also have game contain in Dropbox. May be I will make it better in future.
  • Popular Now