• Advertisement
  • Popular Tags

  • Popular Now

  • Advertisement
  • Similar Content

    • By isu diss
      I'm following rastertek tutorial 14 (http://rastertek.com/tertut14.html). The problem is, slope based texturing doesn't work in my application. There are plenty of slopes in my terrain. None of them get slope color.
      float4 PSMAIN(DS_OUTPUT Input) : SV_Target { float4 grassColor; float4 slopeColor; float4 rockColor; float slope; float blendAmount; float4 textureColor; grassColor = txTerGrassy.Sample(SSTerrain, Input.TextureCoords); slopeColor = txTerMossRocky.Sample(SSTerrain, Input.TextureCoords); rockColor = txTerRocky.Sample(SSTerrain, Input.TextureCoords); // Calculate the slope of this point. slope = (1.0f - Input.LSNormal.y); if(slope < 0.2) { blendAmount = slope / 0.2f; textureColor = lerp(grassColor, slopeColor, blendAmount); } if((slope < 0.7) && (slope >= 0.2f)) { blendAmount = (slope - 0.2f) * (1.0f / (0.7f - 0.2f)); textureColor = lerp(slopeColor, rockColor, blendAmount); } if(slope >= 0.7) { textureColor = rockColor; } return float4(textureColor.rgb, 1); } Can anyone help me? Thanks.

    • By cozzie
      Hi all,
      As a part of the debug drawing system in my engine,  I want to add support for rendering simple text on screen  (aka HUD/ HUD style). From what I've read there are a few options, in short:
      1. Write your own font sprite renderer
      2. Using Direct2D/Directwrite, combine with DX11 rendertarget/ backbuffer
      3. Use an external library, like the directx toolkit etc.
      I want to go for number 2, but articles/ documentation confused me a bit. Some say you need to create a DX10 device, to be able to do this, because it doesn't directly work with the DX11 device.  But other articles tell that this was 'patched' later on and should work now.
      Can someone shed some light on this and ideally provide me an example or article on  how to set this up?
      All input is appreciated.
    • By stale
      I've just started learning about tessellation from Frank Luna's DX11 book. I'm getting some very weird behavior when I try to render a tessellated quad patch if I also render a mesh in the same frame. The tessellated quad patch renders just fine if it's the only thing I'm rendering. This is pictured below:
      However, when I attempt to render the same tessellated quad patch along with the other entities in the scene (which are simple triangle-lists), I get the following error:

      I have no idea why this is happening, and google searches have given me no leads at all. I use the following code to render the tessellated quad patch:
      ID3D11DeviceContext* dc = GetGFXDeviceContext(); dc->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_4_CONTROL_POINT_PATCHLIST); dc->IASetInputLayout(ShaderManager::GetInstance()->m_JQuadTess->m_InputLayout); float blendFactors[] = { 0.0f, 0.0f, 0.0f, 0.0f }; // only used with D3D11_BLEND_BLEND_FACTOR dc->RSSetState(m_rasterizerStates[RSWIREFRAME]); dc->OMSetBlendState(m_blendStates[BSNOBLEND], blendFactors, 0xffffffff); dc->OMSetDepthStencilState(m_depthStencilStates[DSDEFAULT], 0); ID3DX11EffectTechnique* activeTech = ShaderManager::GetInstance()->m_JQuadTess->Tech; D3DX11_TECHNIQUE_DESC techDesc; activeTech->GetDesc(&techDesc); for (unsigned int p = 0; p < techDesc.Passes; p++) { TerrainVisual* terrainVisual = (TerrainVisual*)entity->m_VisualComponent; UINT stride = sizeof(TerrainVertex); UINT offset = 0; GetGFXDeviceContext()->IASetVertexBuffers(0, 1, &terrainVisual->m_VB, &stride, &offset); Vector3 eyePos = Vector3(cam->m_position); Matrix rotation = Matrix::CreateFromYawPitchRoll(entity->m_rotationEuler.x, entity->m_rotationEuler.y, entity->m_rotationEuler.z); Matrix model = rotation * Matrix::CreateTranslation(entity->m_position); Matrix view = cam->GetLookAtMatrix(); Matrix MVP = model * view * m_ProjectionMatrix; ShaderManager::GetInstance()->m_JQuadTess->SetEyePosW(eyePos); ShaderManager::GetInstance()->m_JQuadTess->SetWorld(model); ShaderManager::GetInstance()->m_JQuadTess->SetWorldViewProj(MVP); activeTech->GetPassByIndex(p)->Apply(0, GetGFXDeviceContext()); GetGFXDeviceContext()->Draw(4, 0); } dc->RSSetState(0); dc->OMSetBlendState(0, blendFactors, 0xffffffff); dc->OMSetDepthStencilState(0, 0); I draw my scene by looping through the list of entities and calling the associated draw method depending on the entity's "visual type":
      for (unsigned int i = 0; i < scene->GetEntityList()->size(); i++) { Entity* entity = scene->GetEntityList()->at(i); if (entity->m_VisualComponent->m_visualType == VisualType::MESH) DrawMeshEntity(entity, cam, sun, point); else if (entity->m_VisualComponent->m_visualType == VisualType::BILLBOARD) DrawBillboardEntity(entity, cam, sun, point); else if (entity->m_VisualComponent->m_visualType == VisualType::TERRAIN) DrawTerrainEntity(entity, cam); } HR(m_swapChain->Present(0, 0)); Any help/advice would be much appreciated!
    • By KaiserJohan
      Am trying a basebones tessellation shader and getting unexpected result when increasing the tessellation factor. Am rendering a group of quads and trying to apply tessellation to them.
      OutsideTess = (1,1,1,1), InsideTess= (1,1)

      OutsideTess = (1,1,1,1), InsideTess= (2,1)

      I expected 4 triangles in the quad, not two. Any idea of whats wrong?
      struct PatchTess { float mEdgeTess[4] : SV_TessFactor; float mInsideTess[2] : SV_InsideTessFactor; }; struct VertexOut { float4 mWorldPosition : POSITION; float mTessFactor : TESS; }; struct DomainOut { float4 mWorldPosition : SV_POSITION; }; struct HullOut { float4 mWorldPosition : POSITION; }; Hull shader:
      PatchTess PatchHS(InputPatch<VertexOut, 3> inputVertices) { PatchTess patch; patch.mEdgeTess[ 0 ] = 1; patch.mEdgeTess[ 1 ] = 1; patch.mEdgeTess[ 2 ] = 1; patch.mEdgeTess[ 3 ] = 1; patch.mInsideTess[ 0 ] = 2; patch.mInsideTess[ 1 ] = 1; return patch; } [domain("quad")] [partitioning("fractional_odd")] [outputtopology("triangle_ccw")] [outputcontrolpoints(4)] [patchconstantfunc("PatchHS")] [maxtessfactor( 64.0 )] HullOut hull_main(InputPatch<VertexOut, 3> verticeData, uint index : SV_OutputControlPointID) { HullOut ret; ret.mWorldPosition = verticeData[index].mWorldPosition; return ret; }  
      Domain shader:
      [domain("quad")] DomainOut domain_main(PatchTess patchTess, float2 uv : SV_DomainLocation, const OutputPatch<HullOut, 4> quad) { DomainOut ret; const float MipInterval = 20.0f; ret.mWorldPosition.xz = quad[ 0 ].mWorldPosition.xz * ( 1.0f - uv.x ) * ( 1.0f - uv.y ) + quad[ 1 ].mWorldPosition.xz * uv.x * ( 1.0f - uv.y ) + quad[ 2 ].mWorldPosition.xz * ( 1.0f - uv.x ) * uv.y + quad[ 3 ].mWorldPosition.xz * uv.x * uv.y ; ret.mWorldPosition.y = quad[ 0 ].mWorldPosition.y; ret.mWorldPosition.w = 1; ret.mWorldPosition = mul( gFrameViewProj, ret.mWorldPosition ); return ret; }  
      Any ideas what could be wrong with these shaders?
    • By simco50
      I've stumbled upon Urho3D engine and found that it has a really nice and easy to read code structure.
      I think the graphics abstraction looks really interesting and I like the idea of how it defers pipeline state changes until just before the draw call to resolve redundant state changes.
      This is done by saving the state changes (blendEnabled/SRV changes/RTV changes) in member variables and just before the draw, apply the actual state changes using the graphics context.
      It looks something like this (pseudo):
      void PrepareDraw() { if(renderTargetsDirty) { pD3D11DeviceContext->OMSetRenderTarget(mCurrentRenderTargets); renderTargetsDirty = false } if(texturesDirty) { pD3D11DeviceContext->PSSetShaderResourceView(..., mCurrentSRVs); texturesDirty = false } .... //Some more state changes } This all looked like a great design at first but I've found that there is one big issue with this which I don't really understand how it is solved in their case and how I would tackle it.
      I'll explain it by example, imagine I have two rendertargets: my backbuffer RT and an offscreen RT.
      Say I want to render my backbuffer to the offscreen RT and then back to the backbuffer (Just for the sake of the example).
      You would do something like this:
      //Render to the offscreen RT pGraphics->SetRenderTarget(pOffscreenRT->GetRTV()); pGraphics->SetTexture(diffuseSlot, pDefaultRT->GetSRV()) pGraphics->DrawQuad() pGraphics->SetTexture(diffuseSlot, nullptr); //Remove the default RT from input //Render to the default (screen) RT pGraphics->SetRenderTarget(nullptr); //Default RT pGraphics->SetTexture(diffuseSlot, pOffscreenRT->GetSRV()) pGraphics->DrawQuad(); The problem here is that the second time the application loop comes around, the offscreen rendertarget is still bound as input ShaderResourceView when it gets set as a RenderTargetView because in Urho3D, the state of the RenderTargetView will always be changed before the ShaderResourceViews (see top code snippet) even when I set the SRV to nullptr before using it as a RTV like above causing errors because a resource can't be bound to both input and rendertarget.
      What is usually the solution to this?
  • Advertisement
  • Advertisement
Sign in to follow this  

DX11 DX9 to DX11 convert, getting a warning, Index buffer has not enough space!

This topic is 2080 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

If you intended to correct an error in the post then please contact us.

Recommended Posts

[color=#4A4A4A][background=rgb(241, 241, 241)]Hello,[/background]
I have been converting a rendering system from using DX9 to DX11. At this point, everything I am currently testing is visually working. Unfortunately I am getting a DX API warning, "D3D11: WARNING: ID3D11DeviceContext::DrawIndexed: Index buffer has not enough space! [ EXECUTION WARNING #359: DEVICE_DRAW_INDEX_BUFFER_TOO_SMALL ]"
I have found that getting this warning depends on the meshes I am loading, and what order they are loaded in. If I load meshes, A, B, C in that order I get the issue when I render B or C. Mesh A appears to be the cause as anything loaded after it will cause a call to DrawIndexed to give that warning. From the warning I would think I am somehow requesting to draw using more indices than our present, but this does not appear to be the case. All three meshes use the same index and vertex buffers. If I load mesh A's vertices but not indices the issue remains, but if I load mesh A's indices but not vertices the issue goes away.
I am setting the vertex and index buffers to be used for rendering per shader, then per object calling DrawIndexed using a start vertex and start index. Here are some snippets of the rendering code:
Per shader - [color=#4A4A4A]

[indent=1]UINT stride = sizeof(VERTEX_POSNORMTANTEX);

[indent=1]UINT offset = 0;

[indent=1]ID3D11Buffer *const vertexBufferPtr =


[indent=1]Renderer::theContextPtr->IASetVertexBuffers(0, 1, &vertexBufferPtr, &stride, &offset);
Renderer::theContextPtr->IASetIndexBuffer(IndexBuffer::GetReference().GetIndices(), DXGI_FORMAT_R32_UINT, 0);[color=#4A4A4A]
Per Object - [color=#4A4A4A]
// Assuming we are using triangle lists for now[color=#4A4A4A]
Renderer::theContextPtr->DrawIndexed(mesh.GetPrimitiveCount() * 3, mesh.GetStartIndex(), mesh.GetStartVertex());
I have found a work around but it does not seem like a good way to do things as it requires setting the index buffer per object. The following code will get rid of the issue:
Per Object -[color=#4A4A4A]
... [color=#4A4A4A]
Renderer::theContextPtr->IASetIndexBuffer(IndexBuffer::GetReference().GetIndices(), DXGI_FORMAT_R32_UINT, mesh.GetStartIndex() * 4);[color=#4A4A4A]
// Assuming we are using triangle lists for now[color=#4A4A4A]
Renderer::theContextPtr->DrawIndexed(mesh.GetPrimitiveCount() * 3, 0, mesh.GetStartVertex());[color=#4A4A4A]
Mesh A is some test geometry that I have been using for years with OGL, DX9 and now DX11 projects, so I feel it is unlikely, but not impossible, that there is something wrong with the data. I can recreate the issue with some other meshes that worked with the DX9 version as well. All my vertices and indices are copied into vector containers until I am down loading then I create the index and vertex buffers based on this data.
I have discovered that I can hard code the "mesh.GetPrimitiveCount()" to return 0, so nothing is drawn and I still get the warning.

Here are the snippets of how I create my index buffer:

For each load -

UINT IndexBuffer::AddIndices(UINT startVert, const UINT *_indices, UINT _numIndices)
[indent=1]// Test if this buffer has already been finalized


[indent=1]size_t ret = indices.size();

[indent=1] // Implement a solution for the Renderer Lab

[indent=1]for(size_t i = 0; i < _numIndices; ++i)
[indent=1]indices.push_back(_indices);// + startVert);
[indent=1]return (UINT)ret;
The return is the StartIndexLocation for this particular mesh.

When I am done loading assets -

void IndexBuffer::Finalize()
[indent=1]D3D11_BUFFER_DESC ibd;
[indent=1]ibd.Usage = D3D11_USAGE_IMMUTABLE;
[indent=1]ibd.ByteWidth = sizeof(UINT) * (UINT)indices.size();
[indent=1]ibd.BindFlags = D3D11_BIND_INDEX_BUFFER;
[indent=1]ibd.CPUAccessFlags = 0;
[indent=1]ibd.MiscFlags = 0;
[indent=1]ibd.StructureByteStride = 0;

[indent=1]D3D11_SUBRESOURCE_DATA iinitData;
[indent=1]iinitData.pSysMem = &indices[0];
[indent=1]HR(Renderer::theDevicePtr->CreateBuffer(&ibd, &iinitData, &indexBufferPtr));

[indent=1]// Do not need to keep a local copy of indices
[indent=1]testSize = indices.size();

I have a vertex buffer class that works the same way except for being a template to handle different input layouts. An instance of the vertex buffer class is made for each unique vertex layout. In my example mesh A, B and C all use the same vertex buffer.

Share this post

Link to post
Share on other sites
Sign in to follow this  

  • Advertisement