OpenGL Easy OpenGL Directional Lighting Question

This topic is 2337 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

Recommended Posts

Hey all, this should be a REALLY simple question that someone should hopefully be able to explain.

When defining directional lighting, I'm getting extremely confused by how we should define it. I realize the final coordinate, the w-coordinate, should be 0.

But suppose that up is a positive Z axis, down is a negative Z axis, and West/East are Negative/Positive X axis and South/North are Negative/Positive Y axis -- say I want a directional light to shine from the upper-west, what would my directional light look like? Would my direction vector (simplifying it, I realize I'd use cos/sin) (-1,0,1,0) or (1,0,-1,0)?

Also, are there any gotcha's with lighting when it comes to directional lighting? I saw something about having to apply the light's position AFTER pushing in all of your geometry, otherwise it doesn't translate/move correctly... In addition, when working with the fixed pipeline before, my directional lighting was off ALWAYS. I ended up having to use a spotlight and make it really wide (which worked), however I'd like to do this the correct way.

Thank you!

Share on other sites

I realize the final coordinate, the w-coordinate, should be 0.

This is the case, because you don't want to affect the vector by a translation, when multiplying with a transformation matrix. The transformation should only rotate the vector.

First define your two points.

upper-west

(1,0,1)
Then you should define a source point, I think you want to have (0,0,0), right ?

The direction is (target-source):
(1,0,1) - (0,0,0) = (1,0,1)

After that you need to normalize it, directions are often needed in unit length:
(1,0,1) * (1/length(1,0,1))

Also, are there any gotcha's with lighting when it comes to directional lighting? I saw something about having to apply the light's position AFTER pushing in all of your geometry, otherwise it doesn't translate/move correctly.

When you transform a vertex or vector you move it from one space (i.e. world space) into an other space (i.e. camera space aka eye view). Lighting is often done in camera space, therefore you need to transform all vectors/vertices into the same space. When transforming a model this is done automatically by the transformation matrix, when you set a direction vector for lightning you need to transform it before uploading it to the GPU, that is transform * (lx,ly,lz,0) .

Edit: correction due to the comment of dpadam450. Edited by Ashaman73

Share on other sites
The direction in regards to lights is the direction pointing to the light. Not the direction the rays are coming.

Unless you have a modified coordinate system, openGL y-axis is up.

Share on other sites
Also, are there any gotcha's with lighting when it comes to directional lighting?
From http://www.opengl.or...tml/glLight.xml : When glLight* is called with the GL_POSITION argument, the "position is transformed by the modelview matrix when glLight is called (just as if it were a point), and it is stored in eye coordinates."

Share on other sites
Lots of good responses, thank you all.

So, let me see if I can make some sense of this. First, yes, suppose 0,0,0 is the center always of the screen. Wouldn't to the west and up (as per my prior description) be (-1,0,1)? Assuming that for whatever reason I had translated to some arbitrary point, making it the center (say, [x, y, z]), the resulting light would require the light direction to be (x -(-1), y, z - 1) => (x + 1, y, z -1), correct?

In any case, furthermore, if I were to specify the glLight's Position to -1, 0, 1 -- that wouldn't be enough, since I need to normalize it to unit length... What exactly is "unit length?" Apologies for what is most likely considered a simple question.

Share on other sites
Wouldn't to the west and up (as per my prior description) be (-1,0,1)[/quote]
yes

Assuming that for whatever reason I had translated to some arbitrary point, making it the center (say, [x, y, z]), the resulting light would require the light direction to be (x -(-1), y, z - 1) => (x + 1, y, z -1), correct?[/quote]
A light with w = 0, means it is directional and not effected by translation basically 0*translation is what the math comes out to be. If you want a positional light such as a lamp post then yea something like that.

I'm pretty sure the lights position is normalized if you use GL without shaders. The vector 1,0,1 is bigger than 1,0,0. If you don't know the Pythagorean theorem then thats what it is for.

Share on other sites
I am using GL with Shaders. Trying to get my shadow code working -- had a lot of help from a few other people, just trying to get the final pieces correct.

Good to confirm/know everything, but yeah, it looks like I need to normalize the light's direction...

After reading again (and again) -- is the length(x,y,z) supposed to be the length of the vector, ala the Pythagorean theorem, to normalize it? Then just scale each dimension of the light's direction with that length?

i.e.

(-1, 0, 1) * ( 1 / sqrt(2) ) => (-1 / sqrt(2), 0, 1/ sqrt(2)) ?

If so, I think I finally got it. Oy.

Share on other sites
......what shadow technique are you using. Considering you don't know what normalize means, shadowing is a bit scary to be doing. There is a function called normalize() in GLSL.

Share on other sites
I'm using Shadow Mapping, dropping the depth buffer, then re-applying it to the scene. Everything works perfectly, minus the light source being kind of in a funky position, which is why I'm trying to figure this part out. I do realize there's a function in GLSL for normalize -- I figured I'd probably be able to use that, but wanted to make sure I knew it in the standard pipeline as well.

I understand normalizing puts things into a specific scale/unit length, as you said, but I get very confused at the different matrices, i.e. World Matrix vs View Matrix vs ModelView. I know it seems silly, but I don't do this every day -- I do this on the side, when I have time, so I'm not always working with it and need to be reminded.

Regardless, let me try this out and see if it does what I want it to. Thank you for everyone's help so far.

Share on other sites
So you are most likely doing it wrong because shadow mapping does not require a vector to the sun at all, and will have nothing to do with normalizing it either.

When learning shadow mapping, try projecting an image texture instead of a depth buffer, this way you can get the math part down and then just replace the image with a depth buffer, because sometimes you will user a depth buffer that is not what you thought it was.

I would post your shader or the shadow portion of it.

1. 1
2. 2
3. 3
Rutin
15
4. 4
5. 5

• 9
• 9
• 9
• 11
• 11
• Forum Statistics

• Total Topics
633679
• Total Posts
3013300
×