• Advertisement
  • Popular Tags

  • Popular Now

  • Advertisement
  • Similar Content

    • By elect
      ok, so, we are having problems with our current mirror reflection implementation.
      At the moment we are doing it very simple, so for the i-th frame, we calculate the reflection vectors given the viewPoint and some predefined points on the mirror surface (position and normal).
      Then, using the least squared algorithm, we find the point that has the minimum distance from all these reflections vectors. This is going to be our virtual viewPoint (with the right orientation).
      After that, we render offscreen to a texture by setting the OpenGL camera on the virtual viewPoint.
      And finally we use the rendered texture on the mirror surface.
      So far this has always been fine, but now we are having some more strong constraints on accuracy.
      What are our best options given that:
      - we have a dynamic scene, the mirror and parts of the scene can change continuously from frame to frame
      - we have about 3k points (with normals) per mirror, calculated offline using some cad program (such as Catia)
      - all the mirror are always perfectly spherical (with different radius vertically and horizontally) and they are always convex
      - a scene can have up to 10 mirror
      - it should be fast enough also for vr (Htc Vive) on fastest gpus (only desktops)

      Looking around, some papers talk about calculating some caustic surface derivation offline, but I don't know if this suits my case
      Also, another paper, used some acceleration structures to detect the intersection between the reflection vectors and the scene, and then adjust the corresponding texture coordinate. This looks the most accurate but also very heavy from a computational point of view.

      Other than that, I couldn't find anything updated/exhaustive around, can you help me?
      Thanks in advance
    • By kanageddaamen
      Hello all,
      I am currently working on a game engine for use with my game development that I would like to be as flexible as possible.  As such the exact requirements for how things should work can't be nailed down to a specific implementation and I am looking for, at least now, a default good average case scenario design.
      Here is what I have implemented:
      Deferred rendering using OpenGL Arbitrary number of lights and shadow mapping Each rendered object, as defined by a set of geometry, textures, animation data, and a model matrix is rendered with its own draw call Skeletal animations implemented on the GPU.   Model matrix transformation implemented on the GPU Frustum and octree culling for optimization Here are my questions and concerns:
      Doing the skeletal animation on the GPU, currently, requires doing the skinning for each object multiple times per frame: once for the initial geometry rendering and once for the shadow map rendering for each light for which it is not culled.  This seems very inefficient.  Is there a way to do skeletal animation on the GPU only once across these render calls? Without doing the model matrix transformation on the CPU, I fail to see how I can easily batch objects with the same textures and shaders in a single draw call without passing a ton of matrix data to the GPU (an array of model matrices then an index for each vertex into that array for transformation purposes?) If I do the matrix transformations on the CPU, It seems I can't really do the skinning on the GPU as the pre-transformed vertexes will wreck havoc with the calculations, so this seems not viable unless I am missing something Overall it seems like simplest solution is to just do all of the vertex manipulation on the CPU and pass the pre-transformed data to the GPU, using vertex shaders that do basically nothing.  This doesn't seem the most efficient use of the graphics hardware, but could potentially reduce the number of draw calls needed.

      Really, I am looking for some advice on how to proceed with this, how something like this is typically handled.  Are the multiple draw calls and skinning calculations not a huge deal?  I would LIKE to save as much of the CPU's time per frame so it can be tasked with other things, as to keep CPU resources open to the implementation of the engine.  However, that becomes a moot point if the GPU becomes a bottleneck.
    • By DiligentDev
      I would like to introduce Diligent Engine, a project that I've been recently working on. Diligent Engine is a light-weight cross-platform abstraction layer between the application and the platform-specific graphics API. Its main goal is to take advantages of the next-generation APIs such as Direct3D12 and Vulkan, but at the same time provide support for older platforms via Direct3D11, OpenGL and OpenGLES. Diligent Engine exposes common front-end for all supported platforms and provides interoperability with underlying native API. Shader source code converter allows shaders authored in HLSL to be translated to GLSL and used on all platforms. Diligent Engine supports integration with Unity and is designed to be used as a graphics subsystem in a standalone game engine, Unity native plugin or any other 3D application. It is distributed under Apache 2.0 license and is free to use. Full source code is available for download on GitHub.
      True cross-platform Exact same client code for all supported platforms and rendering backends No #if defined(_WIN32) ... #elif defined(LINUX) ... #elif defined(ANDROID) ... No #if defined(D3D11) ... #elif defined(D3D12) ... #elif defined(OPENGL) ... Exact same HLSL shaders run on all platforms and all backends Modular design Components are clearly separated logically and physically and can be used as needed Only take what you need for your project (do not want to keep samples and tutorials in your codebase? Simply remove Samples submodule. Only need core functionality? Use only Core submodule) No 15000 lines-of-code files Clear object-based interface No global states Key graphics features: Automatic shader resource binding designed to leverage the next-generation rendering APIs Multithreaded command buffer generation 50,000 draw calls at 300 fps with D3D12 backend Descriptor, memory and resource state management Modern c++ features to make code fast and reliable The following platforms and low-level APIs are currently supported:
      Windows Desktop: Direct3D11, Direct3D12, OpenGL Universal Windows: Direct3D11, Direct3D12 Linux: OpenGL Android: OpenGLES MacOS: OpenGL iOS: OpenGLES API Basics
      The engine can perform initialization of the API or attach to already existing D3D11/D3D12 device or OpenGL/GLES context. For instance, the following code shows how the engine can be initialized in D3D12 mode:
      #include "RenderDeviceFactoryD3D12.h" using namespace Diligent; // ...  GetEngineFactoryD3D12Type GetEngineFactoryD3D12 = nullptr; // Load the dll and import GetEngineFactoryD3D12() function LoadGraphicsEngineD3D12(GetEngineFactoryD3D12); auto *pFactoryD3D11 = GetEngineFactoryD3D12(); EngineD3D12Attribs EngD3D12Attribs; EngD3D12Attribs.CPUDescriptorHeapAllocationSize[0] = 1024; EngD3D12Attribs.CPUDescriptorHeapAllocationSize[1] = 32; EngD3D12Attribs.CPUDescriptorHeapAllocationSize[2] = 16; EngD3D12Attribs.CPUDescriptorHeapAllocationSize[3] = 16; EngD3D12Attribs.NumCommandsToFlushCmdList = 64; RefCntAutoPtr<IRenderDevice> pRenderDevice; RefCntAutoPtr<IDeviceContext> pImmediateContext; SwapChainDesc SwapChainDesc; RefCntAutoPtr<ISwapChain> pSwapChain; pFactoryD3D11->CreateDeviceAndContextsD3D12( EngD3D12Attribs, &pRenderDevice, &pImmediateContext, 0 ); pFactoryD3D11->CreateSwapChainD3D12( pRenderDevice, pImmediateContext, SwapChainDesc, hWnd, &pSwapChain ); Creating Resources
      Device resources are created by the render device. The two main resource types are buffers, which represent linear memory, and textures, which use memory layouts optimized for fast filtering. To create a buffer, you need to populate BufferDesc structure and call IRenderDevice::CreateBuffer(). The following code creates a uniform (constant) buffer:
      BufferDesc BuffDesc; BufferDesc.Name = "Uniform buffer"; BuffDesc.BindFlags = BIND_UNIFORM_BUFFER; BuffDesc.Usage = USAGE_DYNAMIC; BuffDesc.uiSizeInBytes = sizeof(ShaderConstants); BuffDesc.CPUAccessFlags = CPU_ACCESS_WRITE; m_pDevice->CreateBuffer( BuffDesc, BufferData(), &m_pConstantBuffer ); Similar, to create a texture, populate TextureDesc structure and call IRenderDevice::CreateTexture() as in the following example:
      TextureDesc TexDesc; TexDesc.Name = "My texture 2D"; TexDesc.Type = TEXTURE_TYPE_2D; TexDesc.Width = 1024; TexDesc.Height = 1024; TexDesc.Format = TEX_FORMAT_RGBA8_UNORM; TexDesc.Usage = USAGE_DEFAULT; TexDesc.BindFlags = BIND_SHADER_RESOURCE | BIND_RENDER_TARGET | BIND_UNORDERED_ACCESS; TexDesc.Name = "Sample 2D Texture"; m_pRenderDevice->CreateTexture( TexDesc, TextureData(), &m_pTestTex ); Initializing Pipeline State
      Diligent Engine follows Direct3D12 style to configure the graphics/compute pipeline. One big Pipelines State Object (PSO) encompasses all required states (all shader stages, input layout description, depth stencil, rasterizer and blend state descriptions etc.)
      Creating Shaders
      To create a shader, populate ShaderCreationAttribs structure. An important member is ShaderCreationAttribs::SourceLanguage. The following are valid values for this member:
      SHADER_SOURCE_LANGUAGE_DEFAULT  - The shader source format matches the underlying graphics API: HLSL for D3D11 or D3D12 mode, and GLSL for OpenGL and OpenGLES modes. SHADER_SOURCE_LANGUAGE_HLSL  - The shader source is in HLSL. For OpenGL and OpenGLES modes, the source code will be converted to GLSL. See shader converter for details. SHADER_SOURCE_LANGUAGE_GLSL  - The shader source is in GLSL. There is currently no GLSL to HLSL converter. To allow grouping of resources based on the frequency of expected change, Diligent Engine introduces classification of shader variables:
      Static variables (SHADER_VARIABLE_TYPE_STATIC) are variables that are expected to be set only once. They may not be changed once a resource is bound to the variable. Such variables are intended to hold global constants such as camera attributes or global light attributes constant buffers. Mutable variables (SHADER_VARIABLE_TYPE_MUTABLE) define resources that are expected to change on a per-material frequency. Examples may include diffuse textures, normal maps etc. Dynamic variables (SHADER_VARIABLE_TYPE_DYNAMIC) are expected to change frequently and randomly. This post describes the resource binding model in Diligent Engine.
      The following is an example of shader initialization:
      ShaderCreationAttribs Attrs; Attrs.Desc.Name = "MyPixelShader"; Attrs.FilePath = "MyShaderFile.fx"; Attrs.SearchDirectories = "shaders;shaders\\inc;"; Attrs.EntryPoint = "MyPixelShader"; Attrs.Desc.ShaderType = SHADER_TYPE_PIXEL; Attrs.SourceLanguage = SHADER_SOURCE_LANGUAGE_HLSL; BasicShaderSourceStreamFactory BasicSSSFactory(Attrs.SearchDirectories); Attrs.pShaderSourceStreamFactory = &BasicSSSFactory; ShaderVariableDesc ShaderVars[] =  {     {"g_StaticTexture", SHADER_VARIABLE_TYPE_STATIC},     {"g_MutableTexture", SHADER_VARIABLE_TYPE_MUTABLE},     {"g_DynamicTexture", SHADER_VARIABLE_TYPE_DYNAMIC} }; Attrs.Desc.VariableDesc = ShaderVars; Attrs.Desc.NumVariables = _countof(ShaderVars); Attrs.Desc.DefaultVariableType = SHADER_VARIABLE_TYPE_STATIC; StaticSamplerDesc StaticSampler; StaticSampler.Desc.MinFilter = FILTER_TYPE_LINEAR; StaticSampler.Desc.MagFilter = FILTER_TYPE_LINEAR; StaticSampler.Desc.MipFilter = FILTER_TYPE_LINEAR; StaticSampler.TextureName = "g_MutableTexture"; Attrs.Desc.NumStaticSamplers = 1; Attrs.Desc.StaticSamplers = &StaticSampler; ShaderMacroHelper Macros; Macros.AddShaderMacro("USE_SHADOWS", 1); Macros.AddShaderMacro("NUM_SHADOW_SAMPLES", 4); Macros.Finalize(); Attrs.Macros = Macros; RefCntAutoPtr<IShader> pShader; m_pDevice->CreateShader( Attrs, &pShader ); Creating the Pipeline State Object
      To create a pipeline state object, define instance of PipelineStateDesc structure. The structure defines the pipeline specifics such as if the pipeline is a compute pipeline, number and format of render targets as well as depth-stencil format:
      // This is a graphics pipeline PSODesc.IsComputePipeline = false; PSODesc.GraphicsPipeline.NumRenderTargets = 1; PSODesc.GraphicsPipeline.RTVFormats[0] = TEX_FORMAT_RGBA8_UNORM_SRGB; PSODesc.GraphicsPipeline.DSVFormat = TEX_FORMAT_D32_FLOAT; The structure also defines depth-stencil, rasterizer, blend state, input layout and other parameters. For instance, rasterizer state can be defined as in the code snippet below:
      // Init rasterizer state RasterizerStateDesc &RasterizerDesc = PSODesc.GraphicsPipeline.RasterizerDesc; RasterizerDesc.FillMode = FILL_MODE_SOLID; RasterizerDesc.CullMode = CULL_MODE_NONE; RasterizerDesc.FrontCounterClockwise = True; RasterizerDesc.ScissorEnable = True; //RSDesc.MultisampleEnable = false; // do not allow msaa (fonts would be degraded) RasterizerDesc.AntialiasedLineEnable = False; When all fields are populated, call IRenderDevice::CreatePipelineState() to create the PSO:
      m_pDev->CreatePipelineState(PSODesc, &m_pPSO); Binding Shader Resources
      Shader resource binding in Diligent Engine is based on grouping variables in 3 different groups (static, mutable and dynamic). Static variables are variables that are expected to be set only once. They may not be changed once a resource is bound to the variable. Such variables are intended to hold global constants such as camera attributes or global light attributes constant buffers. They are bound directly to the shader object:
      PixelShader->GetShaderVariable( "g_tex2DShadowMap" )->Set( pShadowMapSRV ); Mutable and dynamic variables are bound via a new object called Shader Resource Binding (SRB), which is created by the pipeline state:
      m_pPSO->CreateShaderResourceBinding(&m_pSRB); Dynamic and mutable resources are then bound through SRB object:
      m_pSRB->GetVariable(SHADER_TYPE_VERTEX, "tex2DDiffuse")->Set(pDiffuseTexSRV); m_pSRB->GetVariable(SHADER_TYPE_VERTEX, "cbRandomAttribs")->Set(pRandomAttrsCB); The difference between mutable and dynamic resources is that mutable ones can only be set once for every instance of a shader resource binding. Dynamic resources can be set multiple times. It is important to properly set the variable type as this may affect performance. Static variables are generally most efficient, followed by mutable. Dynamic variables are most expensive from performance point of view. This post explains shader resource binding in more details.
      Setting the Pipeline State and Invoking Draw Command
      Before any draw command can be invoked, all required vertex and index buffers as well as the pipeline state should be bound to the device context:
      // Clear render target const float zero[4] = {0, 0, 0, 0}; m_pContext->ClearRenderTarget(nullptr, zero); // Set vertex and index buffers IBuffer *buffer[] = {m_pVertexBuffer}; Uint32 offsets[] = {0}; Uint32 strides[] = {sizeof(MyVertex)}; m_pContext->SetVertexBuffers(0, 1, buffer, strides, offsets, SET_VERTEX_BUFFERS_FLAG_RESET); m_pContext->SetIndexBuffer(m_pIndexBuffer, 0); m_pContext->SetPipelineState(m_pPSO); Also, all shader resources must be committed to the device context:
      m_pContext->CommitShaderResources(m_pSRB, COMMIT_SHADER_RESOURCES_FLAG_TRANSITION_RESOURCES); When all required states and resources are bound, IDeviceContext::Draw() can be used to execute draw command or IDeviceContext::DispatchCompute() can be used to execute compute command. Note that for a draw command, graphics pipeline must be bound, and for dispatch command, compute pipeline must be bound. Draw() takes DrawAttribs structure as an argument. The structure members define all attributes required to perform the command (primitive topology, number of vertices or indices, if draw call is indexed or not, if draw call is instanced or not, if draw call is indirect or not, etc.). For example:
      DrawAttribs attrs; attrs.IsIndexed = true; attrs.IndexType = VT_UINT16; attrs.NumIndices = 36; attrs.Topology = PRIMITIVE_TOPOLOGY_TRIANGLE_LIST; pContext->Draw(attrs); Tutorials and Samples
      The GitHub repository contains a number of tutorials and sample applications that demonstrate the API usage.
      Tutorial 01 - Hello Triangle This tutorial shows how to render a simple triangle using Diligent Engine API.   Tutorial 02 - Cube This tutorial demonstrates how to render an actual 3D object, a cube. It shows how to load shaders from files, create and use vertex, index and uniform buffers.   Tutorial 03 - Texturing This tutorial demonstrates how to apply a texture to a 3D object. It shows how to load a texture from file, create shader resource binding object and how to sample a texture in the shader.   Tutorial 04 - Instancing This tutorial demonstrates how to use instancing to render multiple copies of one object using unique transformation matrix for every copy.   Tutorial 05 - Texture Array This tutorial demonstrates how to combine instancing with texture arrays to use unique texture for every instance.   Tutorial 06 - Multithreading This tutorial shows how to generate command lists in parallel from multiple threads.   Tutorial 07 - Geometry Shader This tutorial shows how to use geometry shader to render smooth wireframe.   Tutorial 08 - Tessellation This tutorial shows how to use hardware tessellation to implement simple adaptive terrain rendering algorithm.   Tutorial_09 - Quads This tutorial shows how to render multiple 2D quads, frequently swithcing textures and blend modes.
      AntTweakBar sample demonstrates how to use AntTweakBar library to create simple user interface.

      Atmospheric scattering sample is a more advanced example. It demonstrates how Diligent Engine can be used to implement various rendering tasks: loading textures from files, using complex shaders, rendering to textures, using compute shaders and unordered access views, etc. 

      The repository includes Asteroids performance benchmark based on this demo developed by Intel. It renders 50,000 unique textured asteroids and lets compare performance of D3D11 and D3D12 implementations. Every asteroid is a combination of one of 1000 unique meshes and one of 10 unique textures. 

      Integration with Unity
      Diligent Engine supports integration with Unity through Unity low-level native plugin interface. The engine relies on Native API Interoperability to attach to the graphics API initialized by Unity. After Diligent Engine device and context are created, they can be used us usual to create resources and issue rendering commands. GhostCubePlugin shows an example how Diligent Engine can be used to render a ghost cube only visible as a reflection in a mirror.

    • By Yxjmir
      I'm trying to load data from a .gltf file into a struct to use to load a .bin file. I don't think there is a problem with how the vertex positions are loaded, but with the indices. This is what I get when drawing with glDrawArrays(GL_LINES, ...):

      Also, using glDrawElements gives a similar result. Since it looks like its drawing triangles using the wrong vertices for each face, I'm assuming it needs an index buffer/element buffer. (I'm not sure why there is a line going through part of it, it doesn't look like it belongs to a side, re-exported it without texture coordinates checked, and its not there)
      I'm using jsoncpp to load the GLTF file, its format is based on JSON. Here is the gltf struct I'm using, and how I parse the file:
      #define GLTF_TARGET_ARRAY_BUFFER (34962) #define GLTF_TARGET_ELEMENT_ARRAY_BUFFER (34963) #define GLTF_COMPONENT_TYPE_BYTE (5120) #define GLTF_COMPONENT_TYPE_UNSIGNED_BYTE (5121) #define GLTF_COMPONENT_TYPE_SHORT (5122) #define GLTF_COMPONENT_TYPE_UNSIGNED_SHORT (5123) #define GLTF_COMPONENT_TYPE_INT (5124) #define GLTF_COMPONENT_TYPE_UNSIGNED_INT (5125) #define GLTF_COMPONENT_TYPE_FLOAT (5126) #define GLTF_COMPONENT_TYPE_DOUBLE (5127) #define GLTF_PARAMETER_TYPE_BYTE (5120) #define GLTF_PARAMETER_TYPE_UNSIGNED_BYTE (5121) #define GLTF_PARAMETER_TYPE_SHORT (5122) #define GLTF_PARAMETER_TYPE_UNSIGNED_SHORT (5123) #define GLTF_PARAMETER_TYPE_INT (5124) #define GLTF_PARAMETER_TYPE_UNSIGNED_INT (5125) #define GLTF_PARAMETER_TYPE_FLOAT (5126) #define GLTF_PARAMETER_TYPE_FLOAT_VEC2 (35664) #define GLTF_PARAMETER_TYPE_FLOAT_VEC3 (35665) #define GLTF_PARAMETER_TYPE_FLOAT_VEC4 (35666) struct GLTF { struct Accessor { USHORT bufferView; USHORT componentType; UINT count; vector<INT> max; vector<INT> min; string type; }; vector<Accessor> m_accessors; struct Asset { string copyright; string generator; string version; }m_asset; struct BufferView { UINT buffer; UINT byteLength; UINT byteOffset; UINT target; }; vector<BufferView> m_bufferViews; struct Buffer { UINT byteLength; string uri; }; vector<Buffer> m_buffers; vector<string> m_Images; struct Material { string name; string alphaMode; Vec4 baseColorFactor; UINT baseColorTexture; UINT normalTexture; float metallicFactor; }; vector<Material> m_materials; struct Meshes { string name; struct Primitive { vector<UINT> attributes_indices; UINT indices; UINT material; }; vector<Primitive> primitives; }; vector<Meshes> m_meshes; struct Nodes { int mesh; string name; Vec3 translation; }; vector<Nodes> m_nodes; struct Scenes { UINT index; string name; vector<UINT> nodes; }; vector<Scenes> m_scenes; vector<UINT> samplers; struct Textures { UINT sampler; UINT source; }; vector<Textures> m_textures; map<UINT, string> attributes_map; map<UINT, string> textures_map; }; GLTF m_gltf; // This is actually in the Mesh class bool Mesh::Load(string sFilename) { string sFileAsString; stringstream sStream; ifstream fin(sFilename); sStream << fin.rdbuf(); fin.close(); sFileAsString = sStream.str(); Json::Reader r; Json::Value root; if (!r.parse(sFileAsString, root)) { string errors = r.getFormatedErrorMessages(); if (errors != "") { // TODO: Log errors return false; } } if (root.isNull()) return false; Json::Value object; Json::Value value; // Load Accessors array, these are referenced by attributes with their index value object = root.get("accessors", Json::Value()); // store object with key "accessors", if not found it will default to Json::Value() if (!object.isNull()) { for (Json::ValueIterator it = object.begin(); it != object.end(); it++) { GLTF::Accessor accessor; value = (*it).get("bufferView", Json::Value()); if (!value.isNull()) accessor.bufferView = value.asUINT(); else return false; value = (*it).get("componentType", Json::Value()); if (!value.isNull()) accessor.componentType = value.asUINT(); else return false; value = (*it).get("count", Json::Value()); if (!value.isNull()) accessor.count = value.asUINT(); else return false; value = (*it).get("type", Json::Value()); if (!value.isNull()) accessor.type = value.asString(); else return false; m_gltf.accessors.push_back(accessor); } } else return false; object = root.get("bufferViews", Json::Value()); if(!object.isNull()) { for (Json::ValueIterator it = object.begin(); it != object.end(); it++) { GLTF::BufferView bufferView; value = (*it).get("buffer", Json::Value()); if(!value.isNull()) bufferView.buffer = value.asUInt(); else return false; value = (*it).get("byteLength", Json::Value()); if(!value.isNull()) bufferView.byteLength = value.asUInt(); else return false; value = (*it).get("byteOffset", Json::Value()); if(!value.isNull()) bufferView.byteOffset = value.asUInt(); else return false; value = (*it).get("target", Json::Value()); if(!value.isNull()) bufferView.target = value.asUInt(); else return false; m_gltf.m_bufferViews.push_back(bufferView); } } else return false; object = root.get("buffers", Json::Value()); if(!object.isNull()) { for (Json::ValueIterator it = object.begin(); it != object.end(); it++) { GLTF::Buffer buffer; value = (*it).get("byteLength", Json::Value()); if(!value.isNull()) buffer.byteLength = value.asUInt(); else return false; // Store the filename of the .bin file value = (*it).get("uri", Json::Value()); if(!value.isNull()) buffer.uri = value.asString(); else return false; } } else return false; object = root.get("meshes", Json::Value()); if(!object.isNull()) { for(Json::ValueIterator it = object.begin(); it != object.end(); it++) { GLTF::Meshes mesh; value = (*it).get("primitives", Json::Value()); for(Json::ValueIterator value_it = value.begin(); value_it != value.end(); value_it++) { GLTF::Meshes::Primitive primitive; Json::Value attributes; attributes = (*value_it).get("attributes", Json::Value()); vector<string> memberNames = attributes.getMemberNames(); for(size_t i = 0; i < memberNames.size(); i++) { Json::Value member; member = attributes.get(memeberNames[i], Json::Value()); if(!member.isNull()) { primitive.attributes_indices.push_back(member.asUInt()); m_gltf.attributes_map[member.asUInt()] = memberNames[i]; // Each of these referes to an accessor by indice, so each indice should be unique, and they are when loading a cube } else return false; } // Indice of the accessor used for indices Json::Value indices; indices = (*value_it).get("indices", Json::Value()); primitive.indices = indices.asUInt(); mesh.primitives.push_back(primitive); } m_gltf.m_meshes.push_back(mesh); } } vector<float> vertexData; vector<USHORT> indiceData; int vertexBufferSizeTotal = 0; int elementBufferSizeTotal = 0; GLTF::Meshes mesh = m_gltf.m_meshes[0]; vector<GLTF::Meshes::Primitive> primitives = mesh.primitives; // trying to make the code easier to read for (size_t p = 0; p < primitive.size(); p++) { vector<UINT> attributes = primitives[p].attributes_indices; for(size_t a = 0; a < attributes.size(); a++) { GLTF::Accessor accessor = m_gltf.m_accessors[attributes[a]]; GLTF::BufferView bufferView = m_gltf.m_bufferViews[accessor.bufferView]; UINT target = bufferView.target; if(target == GLTF_TARGET_ARRAY_BUFFER) vertexBufferSizeTotal += bufferView.byteLength; } UINT indice = primitives[p].indices; GLTF::BufferView bufferView = m_gltf.m_bufferViews[indice]; UINT target = bufferView.target; if(target == GLTF_TARGET_ELEMENT_ARRAY_BUFFER) elementBufferSizeTotal += bufferView.byteLength; } // These have already been generated glBindVertexArray(g_pGame->m_VAO); glBindBuffer(GL_ARRAY_BUFFER, g_pGame->m_VBO); glBufferData(GL_ARRAY_BUFFER, vertexBufferSizeTotal, nullptr, GL_STATIC_DRAW); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, g_pGame->m_EBO); glBufferData(GL_ELEMENT_ARRAY_BUFFER, elementBufferSizeTotal, nullptr, GL_STATIC_DRAW); int offset = 0; int offset_indice = 0; for (size_t p = 0; p < primitive.size(); p++) { vector<UINT> attributes = primitives[p].attributes_indices; int pos = sFilename.find_last_of('\\') + 1; string sFolder = sFilename.substr(0, pos); for (size_t a = 0; a < attributes.size(); a++) { LoadBufferView(sFolder, attributes[a], data, offset); } UINT indice = primitives[p].indices; GLTF::BufferView bufferView_indice = m_gltf.m_bufferViews[indice]; UINT target_indice = bufferView_indice.target; bool result = LoadBufferView(sFolder, indice, data, offset_indice); if(!result) return false; } return true; } bool Mesh::LoadBufferView(string sFolder, UINT a, vector<float> &vertexData, vector<float> &indiceData, int &offset_indice) { ifstream fin; GLTF::Accessor accessor = m_gltf.m_accessors[a]; GLTF::BufferView bufferView = m_gltf.m_bufferViews[accessor.bufferView]; GLTF::Buffer buffer = m_gltf.m_buffers[bufferView.buffer]; const size_t count = accessor.count; UINT target = bufferView.target; int elementSize; int componentSize; int numComponents; string sFilename_bin = sFolder + buffer.uri; fin.open(sFilename_bin, ios::binary); if (fin.fail()) { return false; } fin.seekg(bufferView.byteOffset, ios::beg); switch (accessor.componentType) { case GLTF_COMPONENT_TYPE_BYTE: componentSize = sizeof(GLbyte); break; case GLTF_COMPONENT_TYPE_UNSIGNED_BYTE: componentSize = sizeof(GLubyte); break; case GLTF_COMPONENT_TYPE_SHORT: componentSize = sizeof(GLshort); break; case GLTF_COMPONENT_TYPE_UNSIGNED_SHORT: componentSize = sizeof(GLushort); break; case GLTF_COMPONENT_TYPE_INT: componentSize = sizeof(GLint); break; case GLTF_COMPONENT_TYPE_UNSIGNED_INT: componentSize = sizeof(GLuint); break; case GLTF_COMPONENT_TYPE_FLOAT: componentSize = sizeof(GLfloat); break; case GLTF_COMPONENT_TYPE_DOUBLE: componentSize = sizeof(GLfloat); break; default: componentSize = 0; break; } if (accessor.type == "SCALAR") numComponents = 1; else if (accessor.type == "VEC2") numComponents = 2; else if (accessor.type == "VEC3") numComponents = 3; else if (accessor.type == "VEC4") numComponents = 4; else if (accessor.type == "MAT2") numComponents = 4; else if (accessor.type == "MAT3") numComponents = 9; else if (accessor.type == "MAT4") numComponents = 16; else return false; vector<float> fSubdata; // I'm pretty sure this is one of the problems, or related to it. If I use vector<USHORT> only half of the vector if filled, if I use GLubyte, the entire vector is filled, but the data might not be right vector<GLubyte> nSubdata; elementSize = (componentSize) * (numComponents); // Only fill the vector I'm using if (accessor.type == "SCALAR") { nSubdata.resize(count * numComponents); fin.read(reinterpret_cast<char*>(&nSubdata[0]), count/* * elementSize*/); // I commented this out since I'm not sure which size the .bin is storing the indice values, and I kept getting runtime errors, no matter what type I used for nSubdata } else { fSubdata.resize(count * numComponents); fin.read(reinterpret_cast<char*>(&fSubdata[0]), count * elementSize); } switch (target) { case GLTF_TARGET_ARRAY_BUFFER: { vertexData.insert(vertexData.end(), fSubdata.begin(), fSubdata.end()); glBindBuffer(GL_ARRAY_BUFFER, g_pGame->m_VBO); glBufferSubData(GL_ARRAY_BUFFER, offset, fSubdata.size() * componentSize, &fSubdata[0]); int attribute_index = 0; // I'm only loading vertex positions, the only attribute stored in the files for now glEnableVertexAttribArray(attribute_index); glVertexAttribPointer(0, numComponents, GL_FLOAT, GL_FALSE, componentSize * numComponents, (void*)(offset)); }break; case GLTF_TARGET_ELEMENT_ARRAY_BUFFER: { indiceData.insert(indiceData.end(), nSubdata.begin(), nSubdata.end()); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, g_pGame->m_EBO); // This is another area where I'm not sure of the correct values, but if componentSize is the correct size for the type being used it should be correct glBufferSubData is expecting the size in bytes, right? glBufferSubData(GL_ELEMENT_ARRAY_BUFFER, offset, nSubdata.size() * componentSize, &nSubdata[0]); }break; default: return false; } if (accessor.type == "SCALAR") offset += nSubdata.size() * componentSize; else offset += fSubdata.size() * componentSize; fin.close(); return true; } these are the draw calls, I only use one at a time, but neither is currently display properly, g_pGame->m_indices is the same as indiceData vector, and vertexCount contains the correct vertex count, but I forgot to copy the lines of code containing where I set them, which is at the end of Mesh::Load(), I double checked the values to make sure.
      glDrawElements(GL_LINES, g_pGame->m_indices.size(), GL_UNSIGNED_BYTE, (void*)0); // Only shows with GL_UNSIGNED_BYTE
      glDrawArrays(GL_LINES, 0, g_pGame->m_vertexCount);
      So, I'm asking what type should I use for the indices? it doesn't seem to be unsigned short, which is what I selected with the Khronos Group Exporter for blender. Also, am I reading part or all of the .bin file wrong?
    • By ritzmax72
      That means how do I use base DirectX or OpenGL api's to make a physics based destruction simulation? 
      Will it be just smart rendering or something else is required?
  • Advertisement
  • Advertisement
Sign in to follow this  

OpenGL [DirectX 11] Sudden Saturday Shadow Sadness Syndrome

This topic is 2060 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

If you intended to correct an error in the post then please contact us.

Recommended Posts

I just got out of rehab from my previous shadow problem.
I was able to change the type so that I could view it in PIX and then I was able to see that the values had too much range.
The way to fix it follows.
Old Code:
float shadow2dDepth( Texture2D _tTexture, float2 _vCoord ){ return _tTexture.Sample( lsg_SamplerShadow, _vCoord ).x; }
New Code:
float shadow2dDepth( Texture2D _tTexture, float2 _vCoord ){ return _tTexture.Sample( lsg_SamplerShadow, _vCoord ).x * 0.5 + 0.5; }

  • This works but obviously I prefer a more efficient shader. In DirectX 9 there is no way to read from a depth surface so I have to create a colored surface and output depth to that manually, which is where I perform this conversion, however in OpenGL and OpenGL ES 2 the depth surface can be read directly. But it works without having to perform this conversion anywhere. I don’t set up a special viewport depth range or do the conversion in the shader. Isn’t this X * 0.5 + 0.5 conversion supposed to be done by the rasterizer of Direct3D 11? What do I need to do to make it do this instead of me doing it in my shader?

    The second issue is that my PCSSM shader fails to compile with the following:
    [quote name='My Direct3D 11 Compiler']e:\Blah\x64\DirectX11 Debug\Shader@0x00000000036A1CC0(105,16): error X4014: cannot have gradient operations inside loops with divergent flow control[/quote]
    Here are the relevant parts of the shader:
    float PCSSShadowMap( in vec4 _vShadowCoord ) {
    float fSum = (LSE_PCF_STEPS * 2.0 + 1.0);
    float fTotal = fSum * fSum;
    if ( _vShadowCoord.w > 0.0 && _vShadowCoord.x >= 0.0 && _vShadowCoord.x <= 1.0 && _vShadowCoord.y >= 0.0 && _vShadowCoord.y <= 1.0 ) {
    float fAvgDepth = 0.0;
    float fTotalBlockers = 0.0;
    vec4 vShadowCoordWDivide = _vShadowCoord / _vShadowCoord.w;
    //vShadowCoordWDivide.z -= 0.000625 * 0.125;
    FindBlockers( vShadowCoordWDivide.xy, vShadowCoordWDivide.z, g_vShadowMapUvDepth.xy * 1.25,
    fTotalBlockers, fAvgDepth );
    if ( fTotalBlockers != 0.0 ) {
    fTotal = 0.0;
    vec2 vSize = g_vShadowMapUvDepth.xy * g_fShadowMapCasterSize * fAvgDepth * g_vShadowMapUvDepth.z;
    // Get the distance within the shadow we are.
    vec2 vThis;
    vec2 fStepUv = vSize / LSE_PCF_STEPS;
    for ( float y = -LSE_PCF_STEPS; y <= LSE_PCF_STEPS; y++ ) {
    for ( float x = -LSE_PCF_STEPS; x <= LSE_PCF_STEPS; x++ ) {
    vec2 vOffset = vec2( x, y ) * fStepUv; // **************** LINE 105 **************** //
    float fDepth = shadow2dDepth( g_sShadowTex, vShadowCoordWDivide.xy + vOffset );
    fTotal += (fDepth == 1.0 || fDepth > vShadowCoordWDivide.z) ? 1.0 : 0.0;
    return fTotal / (fSum * fSum);

    • Why is it barking at that line and how can I rewrite it to work?

      If you need shader code that actually compiles, the actual shader that is sent to Direct3D 11 follows. Yes, it is ugly. If you have heart conditions or are pregnant, viewer discretion is advised.
      [spoiler]float mix( in float _fX, in float _fY, in float _fA ) { return _fX * (1.0 - _fA) + _fY * _fA; }
      float2 mix( in float2 _fX, in float2 _fY, in float _fA ) { return _fX * (1.0 - _fA) + _fY * _fA; }
      float3 mix( in float3 _fX, in float3 _fY, in float _fA ) { return _fX * (1.0 - _fA) + _fY * _fA; }
      float4 mix( in float4 _fX, in float4 _fY, in float _fA ) { return _fX * (1.0 - _fA) + _fY * _fA; }
      float2 mix( in float2 _fX, in float2 _fY, in float2 _fA ) { return _fX * (1.0 - _fA) + _fY * _fA; }
      float3 mix( in float3 _fX, in float3 _fY, in float3 _fA ) { return _fX * (1.0 - _fA) + _fY * _fA; }
      float4 mix( in float4 _fX, in float4 _fY, in float4 _fA ) { return _fX * (1.0 - _fA) + _fY * _fA; }
      SamplerState lsg_SamplerBiLinearRepeat:register(s0){Filter=MIN_MAG_LINEAR_MIP_POINT;AddressU=WRAP;AddressV=WRAP;};
      SamplerState lsg_SamplerBiLinearClamp:register(s1){Filter=MIN_MAG_LINEAR_MIP_POINT;AddressU=CLAMP;AddressV=CLAMP;};
      SamplerState lsg_SamplerShadow:register(s15){Filter=MIN_MAG_LINEAR_MIP_POINT;AddressU=CLAMP;AddressV=CLAMP;};
      float shadow2dDepth( Texture2D _tTexture, float2 _vCoord ){ return _tTexture.Sample( lsg_SamplerShadow, _vCoord ).x * 0.5 + 0.5; }
      Texture2D g_sShadowTex:register(t15);
      cbuffer cb0:register(b0){
      cbuffer cb1:register(b1){
      cbuffer cb2:register(b2){
      cbuffer cb3:register(b3){
      int g_iTotalDirLights:packoffset(c0.x);
      float g_fShadowMapCasterSize:packoffset(c5.w);
      #line 1 // e:/Data/LSDDefaultForwardPixelShader.lssl
      #line 2 // e:/Data/LSDDefaultForwardPixelShader.lssl
      #line 3 // e:/Data/LSDDefaultForwardPixelShader.lssl
      #line 4 // e:/Data/LSDDefaultForwardPixelShader.lssl
      #line 5 // e:/Data/LSDDefaultForwardPixelShader.lssl
      #line 6 // e:/Data/LSDDefaultForwardPixelShader.lssl
      #line 8 // e:/Data/LSDDefaultForwardPixelShader.lssl
      #line 9 // e:/Data/LSDDefaultForwardPixelShader.lssl
      #line 10 // e:/Data/LSDDefaultForwardPixelShader.lssl
      #line 11 // e:/Data/LSDDefaultForwardPixelShader.lssl
      #line 12 // e:/Data/LSDDefaultForwardPixelShader.lssl
      #line 13 // e:/Data/LSDDefaultForwardPixelShader.lssl
      #line 14 // e:/Data/LSDDefaultForwardPixelShader.lssl
      #line 15 // e:/Data/LSDDefaultForwardPixelShader.lssl
      #line 17 // e:/Data/LSDDefaultForwardPixelShader.lssl
      #line 1 // e:/Data/LSDLighting.lssl
      #line 2 // e:/Data/LSDLighting.lssl
      #line 3 // e:/Data/LSDLighting.lssl
      #line 4 // e:/Data/LSDLighting.lssl
      #line 5 // e:/Data/LSDLighting.lssl
      #line 6 // e:/Data/LSDLighting.lssl
      #line 7 // e:/Data/LSDLighting.lssl
      #line 8 // e:/Data/LSDLighting.lssl
      #line 9 // e:/Data/LSDLighting.lssl
      #line 10 // e:/Data/LSDLighting.lssl
      #line 11 // e:/Data/LSDLighting.lssl
      #line 12 // e:/Data/LSDLighting.lssl
      #line 13 // e:/Data/LSDLighting.lssl
      #line 14 // e:/Data/LSDLighting.lssl
      #line 15 // e:/Data/LSDLighting.lssl
      #line 25 // e:/Data/LSDLighting.lssl
      struct LSE_COLOR_PAIR{
      #line 52 // e:/Data/LSDLighting.lssl
      #line 102 // e:/Data/LSDLighting.lssl
      #line 126 // e:/Data/LSDLighting.lssl
      #line 139 // e:/Data/LSDLighting.lssl
      #line 181 // e:/Data/LSDLighting.lssl
      #line 223 // e:/Data/LSDLighting.lssl
      #line 289 // e:/Data/LSDLighting.lssl
      #line 360 // e:/Data/LSDLighting.lssl
      LSE_COLOR_PAIR GetDirLightColorAshikhminShirley(in vector<float,3>_vNormalInViewSpace,in vector<float,4>_vViewVector,in int _iIndex){
      #line 300 // e:/Data/LSDLighting.lssl
      LSE_COLOR_PAIR cpRet;
      #line 301 // e:/Data/LSDLighting.lssl
      #line 304 // e:/Data/LSDLighting.lssl
      #line 305 // e:/Data/LSDLighting.lssl
      #line 306 // e:/Data/LSDLighting.lssl
      #line 307 // e:/Data/LSDLighting.lssl
      #line 310 // e:/Data/LSDLighting.lssl
      float fNormalDotHalf=max(dot(_vNormalInViewSpace,vHalfVec),0.0);
      #line 311 // e:/Data/LSDLighting.lssl
      float fNormalDotView=dot(_vNormalInViewSpace,_vViewVector.xyz);
      #line 312 // e:/Data/LSDLighting.lssl
      float fNormalDotLight=dot(_vNormalInViewSpace,vLightDir);
      #line 313 // e:/Data/LSDLighting.lssl
      float fLightDotHalf=dot(vLightDir,vHalfVec);
      #line 314 // e:/Data/LSDLighting.lssl
      float fTangentDotHalf=dot(fTangent,vHalfVec);
      #line 315 // e:/Data/LSDLighting.lssl
      float fBiTangentDotHalf=dot(fBiTangent,vHalfVec);
      #line 322 // e:/Data/LSDLighting.lssl
      const float fRs=0.29999999999999999;
      #line 326 // e:/Data/LSDLighting.lssl
      #line 328 // e:/Data/LSDLighting.lssl
      #line 329 // e:/Data/LSDLighting.lssl
      float fTemp=(1.0-(fNormalDotLight*0.5));
      #line 330 // e:/Data/LSDLighting.lssl
      float fTemp2=(fTemp*fTemp);
      #line 331 // e:/Data/LSDLighting.lssl
      #line 332 // e:/Data/LSDLighting.lssl
      #line 333 // e:/Data/LSDLighting.lssl
      #line 334 // e:/Data/LSDLighting.lssl
      #line 335 // e:/Data/LSDLighting.lssl
      #line 340 // e:/Data/LSDLighting.lssl
      float fNumExp=(((g_vAnistropy.x*fTangentDotHalf)*fTangentDotHalf)+((g_vAnistropy.y*fBiTangentDotHalf)*fBiTangentDotHalf));
      #line 341 // e:/Data/LSDLighting.lssl
      #line 342 // e:/Data/LSDLighting.lssl
      float fNum=sqrt(((g_vAnistropy.x+1.0)*(g_vAnistropy.y+1.0)));
      #line 343 // e:/Data/LSDLighting.lssl
      #line 345 // e:/Data/LSDLighting.lssl
      float fDen=((8.0*3.1415899999999999)*fNormalDotHalf);
      #line 346 // e:/Data/LSDLighting.lssl
      #line 348 // e:/Data/LSDLighting.lssl
      #line 349 // e:/Data/LSDLighting.lssl
      #line 350 // e:/Data/LSDLighting.lssl
      #line 351 // e:/Data/LSDLighting.lssl
      #line 353 // e:/Data/LSDLighting.lssl
      #line 354 // e:/Data/LSDLighting.lssl
      #line 355 // e:/Data/LSDLighting.lssl
      return cpRet;}
      #line 1 // e:/Data/LSDShadowing.lssl
      #line 2 // e:/Data/LSDShadowing.lssl
      #line 3 // e:/Data/LSDShadowing.lssl
      #line 4 // e:/Data/LSDShadowing.lssl
      #line 31 // e:/Data/LSDShadowing.lssl
      #line 46 // e:/Data/LSDShadowing.lssl
      #line 73 // e:/Data/LSDShadowing.lssl
      void FindBlockers(in vector<float,2>_vPos,in float _zViewDepth,in vector<float,2>_vRadius,out float _fBlockers,out float _fAvgDepth){
      #line 58 // e:/Data/LSDShadowing.lssl
      #line 59 // e:/Data/LSDShadowing.lssl
      #line 60 // e:/Data/LSDShadowing.lssl
      #line 71 // e:/Data/LSDShadowing.lssl
      for(float y=-1.0;
      #line 61 // e:/Data/LSDShadowing.lssl
      #line 70 // e:/Data/LSDShadowing.lssl
      for(float x=-1.0;
      #line 62 // e:/Data/LSDShadowing.lssl
      #line 63 // e:/Data/LSDShadowing.lssl
      #line 64 // e:/Data/LSDShadowing.lssl
      float fDepth=shadow2dDepth(g_sShadowTex,(_vPos+vOffset));
      #line 67 // e:/Data/LSDShadowing.lssl
      #line 68 // e:/Data/LSDShadowing.lssl
      #line 72 // e:/Data/LSDShadowing.lssl
      #line 113 // e:/Data/LSDShadowing.lssl
      float PCSSShadowMap(in vector<float,4>_vShadowCoord){
      #line 82 // e:/Data/LSDShadowing.lssl
      float fSum=((2.0*2.0)+1.0);
      #line 83 // e:/Data/LSDShadowing.lssl
      float fTotal=(fSum*fSum);
      #line 85 // e:/Data/LSDShadowing.lssl
      float fAvgDepth=0.0;
      #line 86 // e:/Data/LSDShadowing.lssl
      float fTotalBlockers=0.0;
      #line 88 // e:/Data/LSDShadowing.lssl
      #line 91 // e:/Data/LSDShadowing.lssl
      #line 93 // e:/Data/LSDShadowing.lssl
      #line 94 // e:/Data/LSDShadowing.lssl
      #line 98 // e:/Data/LSDShadowing.lssl
      #line 101 // e:/Data/LSDShadowing.lssl
      #line 109 // e:/Data/LSDShadowing.lssl
      for(float y=-2.0;
      #line 103 // e:/Data/LSDShadowing.lssl
      #line 108 // e:/Data/LSDShadowing.lssl
      for(float x=-2.0;
      #line 104 // e:/Data/LSDShadowing.lssl
      #line 105 // e:/Data/LSDShadowing.lssl
      #line 106 // e:/Data/LSDShadowing.lssl
      float fDepth=shadow2dDepth(g_sShadowTex,(vShadowCoordWDivide.xy+vOffset));
      #line 107 // e:/Data/LSDShadowing.lssl
      return (fTotal/(fSum*fSum));}
      #line 125 // e:/Data/LSDShadowing.lssl
      #line 201 // e:/Data/LSDDefaultForwardPixelShader.lssl
      void Main(in vector<float,3>_vInNormal:NORMAL0,in vector<float,2>_vIn2dTex0:TEXCOORD2,in vector<float,4>_vInPos:SV_POSITION0,in vector<float,4>_vInEyePos:TEXCOORD1,out vector<float,4>_vOutColor:SV_Target0){
      #line 71 // e:/Data/LSDDefaultForwardPixelShader.lssl
      #line 75 // e:/Data/LSDDefaultForwardPixelShader.lssl
      float fShadow=PCSSShadowMap(vShadowCoord);
      #line 86 // e:/Data/LSDDefaultForwardPixelShader.lssl
      #line 93 // e:/Data/LSDDefaultForwardPixelShader.lssl
      #line 101 // e:/Data/LSDDefaultForwardPixelShader.lssl
      #line 108 // e:/Data/LSDDefaultForwardPixelShader.lssl
      LSE_COLOR_PAIR cpLightColors={vector<float,4>(0.0,0.0,0.0,0.0),vector<float,4>(0.0,0.0,0.0,0.0)};
      #line 122 // e:/Data/LSDDefaultForwardPixelShader.lssl
      for(int I=0;
      #line 110 // e:/Data/LSDDefaultForwardPixelShader.lssl
      #line 115 // e:/Data/LSDDefaultForwardPixelShader.lssl
      LSE_COLOR_PAIR cpThis=GetDirLightColorAshikhminShirley(vNormalizedNormal,vViewPosToEye,I);
      #line 120 // e:/Data/LSDDefaultForwardPixelShader.lssl
      #line 121 // e:/Data/LSDDefaultForwardPixelShader.lssl
      #line 145 // e:/Data/LSDDefaultForwardPixelShader.lssl
      #line 178 // e:/Data/LSDDefaultForwardPixelShader.lssl
      #line 184 // e:/Data/LSDDefaultForwardPixelShader.lssl
      #line 200 // e:/Data/LSDDefaultForwardPixelShader.lssl

      L. Spiro

Share this post

Link to post
Share on other sites

In DirectX 9 there is no way to read from a depth surface

I know this is not what you were asking about, but you can sample from a depth texture in dx9, through vendor specific extensions.
INTZ works on pretty much all non ancient ati and nv hw (http://aras-p.info/texts/D3D9GPUHacks.html).

Share this post

Link to post
Share on other sites
"Gradient operations" refer to anything that computes partial derivatives in the pixel shader, and in this particular case it's referring to the "Sample" function. You can't compute derivatives inside of dynamic flow control, since they're undefined if one of the pixels in the quad doesn't take the same path. So you need to either...

A. Use a sampling function that doesn't compute gradients, such as SampleLevel or SampleCmpLevelZero


B. Flatten all branches and unroll all loops in which you need to compute gradients Edited by MJP

Share this post

Link to post
Share on other sites
SampleLevel worked; thank you. My DirectX 11 side is now fully caught up to my DirectX 9, OpenGL 3.2, and OpenGL ES 2 sides. Now I can get serious about new graphics features.

What about the first issue?

L. Spiro

Share this post

Link to post
Share on other sites

What about the first issue?

As you know, one of the many (meticulously hidden) differences between GL and D3D is that the range of the z-coordinate in clipping space differs. In GL the clipping space z goes from [-1…1] and in D3D it goes from [0…1]. GL and GL ES give direct access to the [-1…1] coordinate, which happens to be correct, since the clipping space coordinate you want to compare to is also in [-1…1] as well. Very convenient. In D3D (9 and 11) it is – surprise, surprise – the same, but the clipping space z-coordinate is in [0…1]. If you store the coordinate unaltered, you can just read from it and directly use it without conversions, e.g. render to depth texture, fetch the depth later and compare it to the depth in clipping space from the light’s point of view.

But now, you confuse me a little. How can it be that the values had “too much range” in D3D (i.e. ended up in [-1…1])? What puzzles me even more is that you convert it to [0…1] to compare it to a depth value in [0…1]. How can it be that one coordinate ended up in [-1…1] needing a conversion and the other one is in [0…1]? It appears to me that there is an inconsistency at some point.

I have the feeling that you currently store the depth in [-1…1]. This means, you’re converting it at writing to the render target and when reading from it. (Note that you invert the operation at reading that you have done at writing. --> You can avoid that entirely.) The depth value you compare to is coming out from a projection matrix, thus is still in [0…1], right?

I’m quite sure you don’t, but: Do you use the exact same projection matrix in D3D as you use in GL? (That would cause the depth to be in D3D in [-1…1].) That would be a problem, since in D3D the projection matrix returns something with depth in [0...1] and in GL in [-1…1]. The D3D rasterizer would happily clip away half of your frustum, since in D3D-country things are not getting negative. So… using a proper projection matrix that returns values in the correct range would be the easiest fix, as it would render all needs for conversions void.

Also, storing the depth consistently over all platforms in [-1…1] is rather impossible to achieve (isn't it?), since the D3D depth buffer just happens to store in [0…1]. You may change the coordinate in D3D9, when writing to the render target (needing a conversion at reading), but it won’t help you much in D3D10+, if you use the real depth buffer.
Or can you persuade D3D to work in [-1...1] too by messing with the viewport? Hm...

Is there a reason, you need to have explicitly the depth values in [-1…1] on all platforms? I see that you would like to have consistency, but wouldn't it be just fine if the range is in the "correct" space of the respective platform? If the projection matrix leads you to the correct space (GL: [-1...1], D3D: [0...1], there shouldn't be much to worry about, right?

Best regards!

Share this post

Link to post
Share on other sites
Sign in to follow this  

  • Advertisement