# Falling through map, discrete collision detection

This topic is 2213 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

## Recommended Posts

I have a Quake 3 BSP map and I test for discrete collisions with triangle against the AABB. I have stepping but I don't have sliding along walls. When the player goes up to the side of a staircase and pushes against it and jiggles around a bit he falls through the map. Any ideas?

##### Share on other sites
polyfrag,

show us your aabb - tri method first.

##### Share on other sites
#include <math.h> /* this version of SIGN3 shows some numerical instability, and is improved * by using the uncommented macro that follows, and a different test with it */ #ifdef OLD_TEST #define SIGN3( A ) (((A).x<0)?4:0 | ((A).y<0)?2:0 | ((A).z<0)?1:0) #else #define EPS 10e-5 #define SIGN3( A ) \ (((A).x < EPS) ? 4 : 0 | ((A).x > -EPS) ? 32 : 0 | \ ((A).y < EPS) ? 2 : 0 | ((A).y > -EPS) ? 16 : 0 | \ ((A).z < EPS) ? 1 : 0 | ((A).z > -EPS) ? 8 : 0) #endif #define CROSS( A, B, C ) { \ (C).x = (A).y * (B).z - (A).z * (B).y; \ (C).y = -(A).x * (B).z + (A).z * (B).x; \ (C).z = (A).x * (B).y - (A).y * (B).x; \ } #define SUB( A, B, C ) { \ (C).x = (A).x - (B).x; \ (C).y = (A).y - (B).y; \ (C).z = (A).z - (B).z; \ } #define LERP( A, B, C) ((B)+(A)*((C)-(B))) #define MIN3(a,b,c) ((((a)<(b))&&((a)<(c))) ? (a) : (((b)<(c)) ? (b) : (c))) #define MAX3(a,b,c) ((((a)>(b))&&((a)>(c))) ? (a) : (((b)>(c)) ? (b) : (c))) #define INSIDE 0 #define OUTSIDE 1 typedef struct{ CVector3 a; /* Vertex1 */ CVector3 b; /* Vertex2 */ CVector3 c; /* Vertex3 */ } Triangle3; /*___________________________________________________________________________*/ /* Which of the six face-plane(s) is point P outside of? */ long face_plane(CVector3 p) { long outcode; outcode = 0; if (p.x > .5) outcode |= 0x01; if (p.x < -.5) outcode |= 0x02; if (p.y > .5) outcode |= 0x04; if (p.y < -.5) outcode |= 0x08; if (p.z > .5) outcode |= 0x10; if (p.z < -.5) outcode |= 0x20; return(outcode); } /*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . */ /* Which of the twelve edge plane(s) is point P outside of? */ long bevel_2d(CVector3 p) { long outcode; outcode = 0; if ( p.x + p.y > 1.0) outcode |= 0x001; if ( p.x - p.y > 1.0) outcode |= 0x002; if (-p.x + p.y > 1.0) outcode |= 0x004; if (-p.x - p.y > 1.0) outcode |= 0x008; if ( p.x + p.z > 1.0) outcode |= 0x010; if ( p.x - p.z > 1.0) outcode |= 0x020; if (-p.x + p.z > 1.0) outcode |= 0x040; if (-p.x - p.z > 1.0) outcode |= 0x080; if ( p.y + p.z > 1.0) outcode |= 0x100; if ( p.y - p.z > 1.0) outcode |= 0x200; if (-p.y + p.z > 1.0) outcode |= 0x400; if (-p.y - p.z > 1.0) outcode |= 0x800; return(outcode); } /*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . */ /* Which of the eight corner plane(s) is point P outside of? */ long bevel_3d(CVector3 p) { long outcode; outcode = 0; if (( p.x + p.y + p.z) > 1.5) outcode |= 0x01; if (( p.x + p.y - p.z) > 1.5) outcode |= 0x02; if (( p.x - p.y + p.z) > 1.5) outcode |= 0x04; if (( p.x - p.y - p.z) > 1.5) outcode |= 0x08; if ((-p.x + p.y + p.z) > 1.5) outcode |= 0x10; if ((-p.x + p.y - p.z) > 1.5) outcode |= 0x20; if ((-p.x - p.y + p.z) > 1.5) outcode |= 0x40; if ((-p.x - p.y - p.z) > 1.5) outcode |= 0x80; return(outcode); } /*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . */ /* Test the point "alpha" of the way from P1 to P2 */ /* See if it is on a face of the cube */ /* Consider only faces in "mask" */ long check_point(CVector3 p1, CVector3 p2, float alpha, long mask) { CVector3 plane_point; plane_point.x = LERP(alpha, p1.x, p2.x); plane_point.y = LERP(alpha, p1.y, p2.y); plane_point.z = LERP(alpha, p1.z, p2.z); return(face_plane(plane_point) & mask); } /*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . */ /* Compute intersection of P1 --> P2 line segment with face planes */ /* Then test intersection point to see if it is on cube face */ /* Consider only face planes in "outcode_diff" */ /* Note: Zero bits in "outcode_diff" means face line is outside of */ long check_line(CVector3 p1, CVector3 p2, long outcode_diff) { if ((0x01 & outcode_diff) != 0) if (check_point(p1,p2,( .5-p1.x)/(p2.x-p1.x),0x3e) == INSIDE) return(INSIDE); if ((0x02 & outcode_diff) != 0) if (check_point(p1,p2,(-.5-p1.x)/(p2.x-p1.x),0x3d) == INSIDE) return(INSIDE); if ((0x04 & outcode_diff) != 0) if (check_point(p1,p2,( .5-p1.y)/(p2.y-p1.y),0x3b) == INSIDE) return(INSIDE); if ((0x08 & outcode_diff) != 0) if (check_point(p1,p2,(-.5-p1.y)/(p2.y-p1.y),0x37) == INSIDE) return(INSIDE); if ((0x10 & outcode_diff) != 0) if (check_point(p1,p2,( .5-p1.z)/(p2.z-p1.z),0x2f) == INSIDE) return(INSIDE); if ((0x20 & outcode_diff) != 0) if (check_point(p1,p2,(-.5-p1.z)/(p2.z-p1.z),0x1f) == INSIDE) return(INSIDE); return(OUTSIDE); } /*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . */ /* Test if 3D point is inside 3D triangle */ long point_triangle_intersection(CVector3 p, Triangle3 t) { long sign12,sign23,sign31; CVector3 vect12,vect23,vect31,vect1h,vect2h,vect3h; CVector3 cross12_1p,cross23_2p,cross31_3p; /* First, a quick bounding-box test: */ /* If P is outside triangle bbox, there cannot be an intersection. */ if (p.x > MAX3(t.a.x, t.b.x, t.c.x)) return(OUTSIDE); if (p.y > MAX3(t.a.y, t.b.y, t.c.y)) return(OUTSIDE); if (p.z > MAX3(t.a.z, t.b.z, t.c.z)) return(OUTSIDE); if (p.x < MIN3(t.a.x, t.b.x, t.c.x)) return(OUTSIDE); if (p.y < MIN3(t.a.y, t.b.y, t.c.y)) return(OUTSIDE); if (p.z < MIN3(t.a.z, t.b.z, t.c.z)) return(OUTSIDE); /* For each triangle side, make a vector out of it by subtracting vertexes; */ /* make another vector from one vertex to point P. */ /* The crossproduct of these two vectors is orthogonal to both and the */ /* signs of its X,Y,Z components indicate whether P was to the inside or */ /* to the outside of this triangle side. */ SUB(t.a, t.b, vect12) SUB(t.a, p, vect1h); CROSS(vect12, vect1h, cross12_1p) sign12 = SIGN3(cross12_1p); /* Extract X,Y,Z signs as 0..7 or 0...63 integer */ SUB(t.b, t.c, vect23) SUB(t.b, p, vect2h); CROSS(vect23, vect2h, cross23_2p) sign23 = SIGN3(cross23_2p); SUB(t.c, t.a, vect31) SUB(t.c, p, vect3h); CROSS(vect31, vect3h, cross31_3p) sign31 = SIGN3(cross31_3p); /* If all three crossproduct vectors agree in their component signs, */ /* then the point must be inside all three. */ /* P cannot be OUTSIDE all three sides simultaneously. */ /* this is the old test; with the revised SIGN3() macro, the test * needs to be revised. */ #ifdef OLD_TEST if ((sign12 == sign23) && (sign23 == sign31)) return(INSIDE); else return(OUTSIDE); #else return ((sign12 & sign23 & sign31) == 0) ? OUTSIDE : INSIDE; #endif } /*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . */ /**********************************************/ /* This is the main algorithm procedure. */ /* Triangle t is compared with a unit cube, */ /* centered on the origin. */ /* It returns INSIDE (0) or OUTSIDE(1) if t */ /* intersects or does not intersect the cube. */ /**********************************************/ long t_c_intersection(Triangle3 t) { long v1_test,v2_test,v3_test; float d, denom; CVector3 vect12,vect13,norm; CVector3 hitpp,hitpn,hitnp,hitnn; /* First compare all three vertexes with all six face-planes */ /* If any vertex is inside the cube, return immediately! */ if ((v1_test = face_plane(t.a)) == INSIDE) return(INSIDE); if ((v2_test = face_plane(t.b)) == INSIDE) return(INSIDE); if ((v3_test = face_plane(t.c)) == INSIDE) return(INSIDE); /* If all three vertexes were outside of one or more face-planes, */ /* return immediately with a trivial rejection! */ if ((v1_test & v2_test & v3_test) != 0) return(OUTSIDE); /* Now do the same trivial rejection test for the 12 edge planes */ v1_test |= bevel_2d(t.a) << 8; v2_test |= bevel_2d(t.b) << 8; v3_test |= bevel_2d(t.c) << 8; if ((v1_test & v2_test & v3_test) != 0) return(OUTSIDE); /* Now do the same trivial rejection test for the 8 corner planes */ v1_test |= bevel_3d(t.a) << 24; v2_test |= bevel_3d(t.b) << 24; v3_test |= bevel_3d(t.c) << 24; if ((v1_test & v2_test & v3_test) != 0) return(OUTSIDE); /* If vertex 1 and 2, as a pair, cannot be trivially rejected */ /* by the above tests, then see if the v1-->v2 triangle edge */ /* intersects the cube. Do the same for v1-->v3 and v2-->v3. */ /* Pass to the intersection algorithm the "OR" of the outcode */ /* bits, so that only those cube faces which are spanned by */ /* each triangle edge need be tested. */ if ((v1_test & v2_test) == 0) if (check_line(t.a,t.b,v1_test|v2_test) == INSIDE) return(INSIDE); if ((v1_test & v3_test) == 0) if (check_line(t.a,t.c,v1_test|v3_test) == INSIDE) return(INSIDE); if ((v2_test & v3_test) == 0) if (check_line(t.b,t.c,v2_test|v3_test) == INSIDE) return(INSIDE); /* By now, we know that the triangle is not off to any side, */ /* and that its sides do not penetrate the cube. We must now */ /* test for the cube intersecting the interior of the triangle. */ /* We do this by looking for intersections between the cube */ /* diagonals and the triangle...first finding the intersection */ /* of the four diagonals with the plane of the triangle, and */ /* then if that intersection is inside the cube, pursuing */ /* whether the intersection point is inside the triangle itself. */ /* To find plane of the triangle, first perform crossproduct on */ /* two triangle side vectors to compute the normal vector. */ SUB(t.a,t.b,vect12); SUB(t.a,t.c,vect13); CROSS(vect12,vect13,norm) /* The normal vector "norm" X,Y,Z components are the coefficients */ /* of the triangles AX + BY + CZ + D = 0 plane equation. If we */ /* solve the plane equation for X=Y=Z (a diagonal), we get */ /* -D/(A+B+C) as a metric of the distance from cube center to the */ /* diagonal/plane intersection. If this is between -0.5 and 0.5, */ /* the intersection is inside the cube. If so, we continue by */ /* doing a point/triangle intersection. */ /* Do this for all four diagonals. */ d = norm.x * t.a.x + norm.y * t.a.y + norm.z * t.a.z; /* if one of the diagonals is parallel to the plane, the other will intersect the plane */ if(fabs(denom=(norm.x + norm.y + norm.z))>EPS) /* skip parallel diagonals to the plane; division by 0 can occur */ { hitpp.x = hitpp.y = hitpp.z = d / denom; if (fabs(hitpp.x) <= 0.5) if (point_triangle_intersection(hitpp,t) == INSIDE) return(INSIDE); } if(fabs(denom=(norm.x + norm.y - norm.z))>EPS) { hitpn.z = -(hitpn.x = hitpn.y = d / denom); if (fabs(hitpn.x) <= 0.5) if (point_triangle_intersection(hitpn,t) == INSIDE) return(INSIDE); } if(fabs(denom=(norm.x - norm.y + norm.z))>EPS) { hitnp.y = -(hitnp.x = hitnp.z = d / denom); if (fabs(hitnp.x) <= 0.5) if (point_triangle_intersection(hitnp,t) == INSIDE) return(INSIDE); } if(fabs(denom=(norm.x - norm.y - norm.z))>EPS) { hitnn.y = hitnn.z = -(hitnn.x = d / denom); if (fabs(hitnn.x) <= 0.5) if (point_triangle_intersection(hitnn,t) == INSIDE) return(INSIDE); } /* No edge touched the cube; no cube diagonal touched the triangle. */ /* We're done...there was no intersection. */ return(OUTSIDE); }

 bool TriBoxOverlap(CVector3 vPos, CVector3 vMin, CVector3 vMax, CVector3* vTri) { float center[3]; center[0] = vPos.x+vMax.x+vMin.x; center[1] = vPos.y+vMax.y+vMin.y; center[2] = vPos.z+vMax.z+vMin.z; float halfsize[3]; halfsize[0] = (vMax.x-vMin.x)/2.0f; halfsize[1] = (vMax.y-vMin.y)/2.0f; halfsize[2] = (vMax.z-vMin.z)/2.0f; float scaledown[3]; scaledown[0] = 1.0f / halfsize[0]; scaledown[1] = 1.0f / halfsize[1]; scaledown[2] = 1.0f / halfsize[2]; Triangle3 tri; tri.a = (vTri[0] - center) * scaledown[0]; tri.b = (vTri[1] - center) * scaledown[1]; tri.c = (vTri[2] - center) * scaledown[2]; if(t_c_intersection(tri) == INSIDE) return true; return false; } 

1. 1
2. 2
Rutin
18
3. 3
4. 4
5. 5
frob
12

• 9
• 21
• 13
• 9
• 17
• ### Forum Statistics

• Total Topics
632608
• Total Posts
3007391

×