• Announcements

    • khawk

      Download the Game Design and Indie Game Marketing Freebook   07/19/17

      GameDev.net and CRC Press have teamed up to bring a free ebook of content curated from top titles published by CRC Press. The freebook, Practices of Game Design & Indie Game Marketing, includes chapters from The Art of Game Design: A Book of Lenses, A Practical Guide to Indie Game Marketing, and An Architectural Approach to Level Design. The GameDev.net FreeBook is relevant to game designers, developers, and those interested in learning more about the challenges in game development. We know game development can be a tough discipline and business, so we picked several chapters from CRC Press titles that we thought would be of interest to you, the GameDev.net audience, in your journey to design, develop, and market your next game. The free ebook is available through CRC Press by clicking here. The Curated Books The Art of Game Design: A Book of Lenses, Second Edition, by Jesse Schell Presents 100+ sets of questions, or different lenses, for viewing a game’s design, encompassing diverse fields such as psychology, architecture, music, film, software engineering, theme park design, mathematics, anthropology, and more. Written by one of the world's top game designers, this book describes the deepest and most fundamental principles of game design, demonstrating how tactics used in board, card, and athletic games also work in video games. It provides practical instruction on creating world-class games that will be played again and again. View it here. A Practical Guide to Indie Game Marketing, by Joel Dreskin Marketing is an essential but too frequently overlooked or minimized component of the release plan for indie games. A Practical Guide to Indie Game Marketing provides you with the tools needed to build visibility and sell your indie games. With special focus on those developers with small budgets and limited staff and resources, this book is packed with tangible recommendations and techniques that you can put to use immediately. As a seasoned professional of the indie game arena, author Joel Dreskin gives you insight into practical, real-world experiences of marketing numerous successful games and also provides stories of the failures. View it here. An Architectural Approach to Level Design This is one of the first books to integrate architectural and spatial design theory with the field of level design. The book presents architectural techniques and theories for level designers to use in their own work. It connects architecture and level design in different ways that address the practical elements of how designers construct space and the experiential elements of how and why humans interact with this space. Throughout the text, readers learn skills for spatial layout, evoking emotion through gamespaces, and creating better levels through architectural theory. View it here. Learn more and download the ebook by clicking here. Did you know? GameDev.net and CRC Press also recently teamed up to bring GDNet+ Members up to a 20% discount on all CRC Press books. Learn more about this and other benefits here.
Sign in to follow this  
Followers 0
polyfrag

Digging

4 posts in this topic

Are there any tutorials or source code for working with volumes for digging. Like, let's say I have a polyhedron and I want to take a chunk out of it and reconstruct the mesh (like in Red Faction II) and compute the volume of the chunk and stuff?
0

Share this post


Link to post
Share on other sites
Try looking at voxels and then go onto YouTube and lookup star forge. This looks like what they've done in rf2.
1

Share this post


Link to post
Share on other sites
i guess you look for isosurface extraction from a voxel lattice
search for transvoxel, marching cubes, dual contouring

in the projecr transvoxelXna on github we've implemented a simple version of the transvoxel algo from eric lengyel

u can pm me if u want more info :)
1

Share this post


Link to post
Share on other sites
I can't point you towards any specific articles, but I can give you some guidance on how I'd approach this conceptually...

Rule #1: Try to understand the simplest form of the solution. We can always make things more complicated later.

Abiding by this rule, let's try to subtract a volume from a 2D rectangle using another 2D rectangle. If you have a rect with the lower left oriented at 0,0 with a height & width of 2, and then subtract a 1x1 rectangle from it, can we figure out how to do it on paper? What result should we try to get? Do we want a polygon, or do we want to create a bunch of rects? What's the easiest to work with? What if we subtract the 1x1 rect from an arbitrary location somewhere on or around the 2x2 rect?

I think ideally, we'd want to recreate the geometry by rebuilding it with new verticies. The new rect would certainly contain the verticies which are contained within its bounding area. We'd also be interested in the lines of the verticies which are within the bounding area since the new region will have to place its adjusted verts on that line.
Example:
Original rect verticies: {(0,0),(0,2),(2,2),(2,0)}
Subtraction rect verts: {(1,1),(1,3),(3,3),(3,1)}

Result should contain five verts:
{(0,0),(0,2),(1,2),(1,1),(2,1),(2,0)}
Note: (1,1) was the bounding vert but it was connected to (1,3) and (3,1). So, how do we get the resulting verts (1,2) and (2,1)? We do a line intersection test! Since we know that there is a vert contained within another vert, we MUST have intersecting lines. Although this is a math & physics forum, I'm going to leave the line intersection test mathematics out -- it's pretty simple; start with the "y = mx + b" equations and [i]don't forget to account for floating point precision errors!!!!!!! Set a minimum epsilon and use testing to adjust its accuracy. Test this thoroughly since you don't want floating point precision errors to randomly creep up on you. (A more scientific approach would be to know exactly how large your epsilon tolerance needs to be for different parts of the float scale)[/i]

Anyways, once you've got this solved for integers in two dimensional space, you can add additional complexity by adding in additional verticies at arbitrary positions, the z-coordinate, and eventually rebuilding complex meshes (such as rebuilding a section of terrain to simulate a crater after an artillery shell impacted it).

If you get stuck on something, back up a step to its more simple form and make sure that its working as expected.

On a slightly more abstract/philosophical note, you may be able to avoid doing any of this all together if you can find a clever way to eliminate this requirement from your game play or simulate its effect (some games will use precalculated shattered meshes to simulate something like wood splintering). If this is vital to your game play (such as with mining out a tunnel), you may be able to get away with carving out blocks (like minecraft or terraria) instead of recreating meshes. Anyway, its something to keep in mind. If you spend an hour trying to think of a clever solution, it may be more cost effective than spending ten hours or more implementing a less clever solution.
1

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!


Register a new account

Sign in

Already have an account? Sign in here.


Sign In Now
Sign in to follow this  
Followers 0