• Announcements

    • khawk

      Download the Game Design and Indie Game Marketing Freebook   07/19/17

      GameDev.net and CRC Press have teamed up to bring a free ebook of content curated from top titles published by CRC Press. The freebook, Practices of Game Design & Indie Game Marketing, includes chapters from The Art of Game Design: A Book of Lenses, A Practical Guide to Indie Game Marketing, and An Architectural Approach to Level Design. The GameDev.net FreeBook is relevant to game designers, developers, and those interested in learning more about the challenges in game development. We know game development can be a tough discipline and business, so we picked several chapters from CRC Press titles that we thought would be of interest to you, the GameDev.net audience, in your journey to design, develop, and market your next game. The free ebook is available through CRC Press by clicking here. The Curated Books The Art of Game Design: A Book of Lenses, Second Edition, by Jesse Schell Presents 100+ sets of questions, or different lenses, for viewing a game’s design, encompassing diverse fields such as psychology, architecture, music, film, software engineering, theme park design, mathematics, anthropology, and more. Written by one of the world's top game designers, this book describes the deepest and most fundamental principles of game design, demonstrating how tactics used in board, card, and athletic games also work in video games. It provides practical instruction on creating world-class games that will be played again and again. View it here. A Practical Guide to Indie Game Marketing, by Joel Dreskin Marketing is an essential but too frequently overlooked or minimized component of the release plan for indie games. A Practical Guide to Indie Game Marketing provides you with the tools needed to build visibility and sell your indie games. With special focus on those developers with small budgets and limited staff and resources, this book is packed with tangible recommendations and techniques that you can put to use immediately. As a seasoned professional of the indie game arena, author Joel Dreskin gives you insight into practical, real-world experiences of marketing numerous successful games and also provides stories of the failures. View it here. An Architectural Approach to Level Design This is one of the first books to integrate architectural and spatial design theory with the field of level design. The book presents architectural techniques and theories for level designers to use in their own work. It connects architecture and level design in different ways that address the practical elements of how designers construct space and the experiential elements of how and why humans interact with this space. Throughout the text, readers learn skills for spatial layout, evoking emotion through gamespaces, and creating better levels through architectural theory. View it here. Learn more and download the ebook by clicking here. Did you know? GameDev.net and CRC Press also recently teamed up to bring GDNet+ Members up to a 20% discount on all CRC Press books. Learn more about this and other benefits here.
Sign in to follow this  
Followers 0
casefc3s

Method to Create a Mesh that is Inset by a Specific Distance

4 posts in this topic

Alright, this is probably something fairly simple for those well-versed in mesh/vertex manipulation but I'm having trouble wrapping my head around a solution and haven't found anything else close enough to my problem to get me started in the right direction.

I have an existing mesh plane, which could be either a rectangle or any convex/concave polygon. What I need to do is create an identical mesh, and then effectively scale that mesh down to create a border of 'd' distance between the edges of the original and duplicate mesh. Duplicating the mesh and its vertices/triangles isn't a problem, but properly scaling it is and I don't have enough experience in graphics programming to know how to scale all verts as a whole, still being centered on its original position, etc.

Normally, I would simply scale an object down by hand in an editor until it "looked right" or do it in a 3d program, but in this instance it needs to be inset dynamically at runtime by an input value, and be physically correct. I'm hoping I posted this in the right place since it's a little more specific than a generic 'getting started' thread. Thanks for any help in advance, I've been racking my brain to try to figure it out but graphics programming isn't my forte and I definitely want to nail it down!
0

Share this post


Link to post
Share on other sites
Rather than scaling, I'd probably think about using the surface normals maybe?

new_vert = old_vert + (vertex_normal * some_distance_offset)

Depending on what you're doing, that might be enough?
0

Share this post


Link to post
Share on other sites
Yeah, you'll definitely need to offset the vertices by some factor in the direction of their surface normals. Scaling the entire model offsets vertices based on the origin of the entire model, which is not the same. This is especially noticeable on concave shapes. Under a scaling transform every vertex will move away from the object's origin, but vertices whose surface normal is pointing towards the origin will need to move towards it for an offset (aka dilate) operation.
0

Share this post


Link to post
Share on other sites
Making two layers using the surface normals is pretty easy but here are some pitfalls:

1) Which way do you let the user scale the derived surface? Or do you support both thicker and thinner? This effects the lighting as you need to keep the winding order consistent.
2) If the surface is open like a tube, you will need to stitch the layers together at the ends. This is much more of a challenge than just deriving a thicker layer.
3) If you supported cutting holes and stitching pieces together, there are all-new problems when you add thickness, as the two layers (each featuring seamless articulation) are no longer simply offset by the normals, the projected region of intersection needs to be scaled about its midpoint and reprojected onto a slightly different surface. Edited by Catmull Dog
0

Share this post


Link to post
Share on other sites
Well, this only applies to a simple polygon; it can be concave or convex, but not cross itself or have "holes". What I ended up doing was tracing the perimeter as all vertices in this circumstance are on the border of the poly plane. I took the normal of the 'edge' vector between the current vertex to the last, and then the normal of the edge vector from the current to the next, scaled each by the amount of inset needed and then stored that offset in a temp array, which was then applied after looping through them all. This wouldn't work exactly as desired for concave polys and would create a translation that was in the wrong direction, so I just did a 'point in polygon' check and if was out of the original poly's surface space I used the inverse of that translation to get it in the right position. This should work with 3d and complex polygons as well with a little more effort, I just didn't go that far this time. Thanks for the help everyone!
0

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!


Register a new account

Sign in

Already have an account? Sign in here.


Sign In Now
Sign in to follow this  
Followers 0