• Announcements

    • khawk

      Download the Game Design and Indie Game Marketing Freebook   07/19/17

      GameDev.net and CRC Press have teamed up to bring a free ebook of content curated from top titles published by CRC Press. The freebook, Practices of Game Design & Indie Game Marketing, includes chapters from The Art of Game Design: A Book of Lenses, A Practical Guide to Indie Game Marketing, and An Architectural Approach to Level Design. The GameDev.net FreeBook is relevant to game designers, developers, and those interested in learning more about the challenges in game development. We know game development can be a tough discipline and business, so we picked several chapters from CRC Press titles that we thought would be of interest to you, the GameDev.net audience, in your journey to design, develop, and market your next game. The free ebook is available through CRC Press by clicking here. The Curated Books The Art of Game Design: A Book of Lenses, Second Edition, by Jesse Schell Presents 100+ sets of questions, or different lenses, for viewing a game’s design, encompassing diverse fields such as psychology, architecture, music, film, software engineering, theme park design, mathematics, anthropology, and more. Written by one of the world's top game designers, this book describes the deepest and most fundamental principles of game design, demonstrating how tactics used in board, card, and athletic games also work in video games. It provides practical instruction on creating world-class games that will be played again and again. View it here. A Practical Guide to Indie Game Marketing, by Joel Dreskin Marketing is an essential but too frequently overlooked or minimized component of the release plan for indie games. A Practical Guide to Indie Game Marketing provides you with the tools needed to build visibility and sell your indie games. With special focus on those developers with small budgets and limited staff and resources, this book is packed with tangible recommendations and techniques that you can put to use immediately. As a seasoned professional of the indie game arena, author Joel Dreskin gives you insight into practical, real-world experiences of marketing numerous successful games and also provides stories of the failures. View it here. An Architectural Approach to Level Design This is one of the first books to integrate architectural and spatial design theory with the field of level design. The book presents architectural techniques and theories for level designers to use in their own work. It connects architecture and level design in different ways that address the practical elements of how designers construct space and the experiential elements of how and why humans interact with this space. Throughout the text, readers learn skills for spatial layout, evoking emotion through gamespaces, and creating better levels through architectural theory. View it here. Learn more and download the ebook by clicking here. Did you know? GameDev.net and CRC Press also recently teamed up to bring GDNet+ Members up to a 20% discount on all CRC Press books. Learn more about this and other benefits here.
Sign in to follow this  
Followers 0
polyfrag

OpenGL
GLSL shadows not working

1 post in this topic

I copied this code from the tutorial at gametutorials.com and this is what I see in my game:

[img]http://corpstates.myftp.org/downloads/noshadows.jpg[/img]

Here is the code:

corpstates.cpp
[code]
void RenderWorld()
{
DrawHeightMap();
DrawEntities();
}

inline void RenderPlayScene()
{
// Set the current viewport to our texture size
glViewport(0, 0, (int)SHADOW_WIDTH, (int)SHADOW_HEIGHT);
// Now we just need to set the matrices for the light before we render
glMatrixMode(GL_PROJECTION);

// Push on a matrix to make sure we can restore to the old matrix easily
glPushMatrix();
// Set the current projection matrix to our light's projection matrix
glLoadMatrixf(g_mProjection);
// Load modelview mode to set our light's modelview matrix
glMatrixMode(GL_MODELVIEW);
// Load the light's modelview matrix before we render to a texture
glLoadMatrixf(g_mModelView);
// Since we don't care about color when rendering the depth values to
// the shadow-map texture, we disable color writing to increase speed.
glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);
// Eliminate artifacts caused by shadow mapping
glPolygonOffset(8.0f, 4.0f);

// This turns of the polygon offset functionality to fix artifacts.
// Comment this out and run the program to see what artifacts I mean.
glEnable(GL_POLYGON_OFFSET_FILL);
// Render the world according to the light's view
RenderWorld();
// Now that the world is rendered, save the depth values to a texture
glBindTexture(GL_TEXTURE_2D, g_renderTexture);
glCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, 0, 0, (int)SHADOW_WIDTH, (int)SHADOW_HEIGHT);
// We can turn color writing back on since we already stored the depth values
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
// Turn off polygon offsetting
glDisable(GL_POLYGON_OFFSET_FILL);
// Restore our normal viewport size to our screen width and height
glViewport(0, 0, (int)g_width, (int)g_height);
// Go back to the projection mode and restore the original matrix
glMatrixMode(GL_PROJECTION);
// Restore the original projection matrix
glPopMatrix();
// Go back to modelview model to start drawing like normal
glMatrixMode(GL_MODELVIEW);
// Clear the color and depth bits and start over from the camera's view
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glLoadIdentity();
g_camera.Look();
// After we have switched backed to our camera's view, we need to
// grab the inverse of the modelview's matrix. If you are unfamiliar
// with what an inverse of a matrix does, let's review. If you
// multiply a matrix by it's inverse, it basically zeros it out.
// We need the inverse because in the vertex shader we will have a
// vertex that is multiplied by the camera's view matrix (modelview),
// and we need to bring that back down to world space and project
// it into the light's clip space. Since we are working in the light's
// clip space and not the camera's clip space this needs to happen.
// For this to work, we need to make sure we have called the Look()
// function from the camera object before calling GetInverseMatrix().
// Pass in the global matrix that will store our modelview inverse matrix.
// This function grabs the current modelview matrix and returns the inverse.
g_camera.GetInverseMatrix(g_mCameraInverse);
// Render the world and apply the shadow map texture to it
ApplyShadowMap();
glLightfv( GL_LIGHT0, GL_POSITION, g_LightPosition );
}

void RenderScene()
{
if(g_mode == PLAY)
StoreLightMatrices();
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glLoadIdentity();
if(g_mode == PLAY)
RenderPlayScene();
g_GUI.draw();
SwapBuffers(g_hDC);
}
[/code]

shadow.h
[code]
void StoreLightMatrices()
{
// Reset our current light matrices
memset(g_mModelView, 0, sizeof(float)*16);
memset(g_mProjection, 0, sizeof(float)*16);
// Let's push on a new matrix so we don't change the rest of the world
glPushMatrix();
// Push on a new matrix to keep our view changes isolated
glPushMatrix();
// Reset the current modelview matrix
glLoadIdentity();
// This is where we set the light's position and view.
gluLookAt(g_LightPosition[0], g_LightPosition[1], g_LightPosition[2],
g_LightView[0], g_LightView[1], g_LightView[2], 0, 1, 0);
// Now that we have the light's view, let's save the current modelview matrix.
glGetFloatv(GL_MODELVIEW_MATRIX, g_mModelView);
// Now pop off the current light view's matrix
glPopMatrix();
// Reset the current matrix
glLoadIdentity();
// Set our FOV, aspect ratio, then near and far planes for the light's view
gluPerspective(60.0f, 1.0f, 0.5f, 25.0f);
// Grab the current matrix that will be used for the light's projection matrix
glGetFloatv(GL_MODELVIEW_MATRIX, g_mProjection);
// Go back to the original matrix
glPopMatrix();
}
void CreateRenderTexture(int sizeX, int sizeY, int channels, int type)
{
// Create a pointer to store the blank image data
unsigned int *pTexture = NULL;
// Store the current channels to be allocated by default
int channelsTrue = channels;
// If the channels are greater than 4 there must be a special flag like
// GL_DEPTH_COMPONENT, so make sure we only allocate 1 bit per pixel.
if(channels > 4)
channelsTrue = 1;
// Allocate and init memory for the image array and point to it from pTexture
pTexture = new unsigned int [sizeX * sizeY * channelsTrue];
memset(pTexture, 0, sizeX * sizeY * channelsTrue * sizeof(unsigned int));
// Register the texture with OpenGL and bind it to the texture ID
glGenTextures(1, &g_renderTexture);
glBindTexture(GL_TEXTURE_2D, g_renderTexture);

// Create the texture and store it on the video card
glTexImage2D(GL_TEXTURE_2D, 0, channels, sizeX, sizeY, 0, type, GL_UNSIGNED_INT, pTexture);

// Set the texture quality
glTexParameterf(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR);
glTexParameterf(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);
// Since we stored the texture space with OpenGL, we can delete the image data
delete [] pTexture;
}
void RenderWorld();
void ApplyShadowMap()
{

/////// * /////////// * /////////// * NEW * /////// * /////////// * /////////// *

// This function is the main function that needs to be changed from the
// previous tutorial. We needed to take out the texture generation code
// so a couple things will change. This means we will need to turn our
// shadow on, as well as multiply the inverse of our camera matrix by
// the light's projection and modelview matrix. We still include the
// bias matrix to convert the clip space to a 0 to 1 ratio instead of
// a -1 to 1 ratio.
// Let's turn our shaders on for doing shadow mapping on our world
g_Shader.TurnOn();
/////// * /////////// * /////////// * NEW * /////// * /////////// * /////////// *

// Turn on our texture unit for shadow mapping and bind our depth texture
glActiveTextureARB(GL_TEXTURE0_ARB);
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, g_renderTexture);

/////// * /////////// * /////////// * NEW * /////// * /////////// * /////////// *
// In order for the shader to have access to our light's texture of depth
// values, we need to tell our fragment shader the texture unit that our
// texture is being bound to. Since we use GL_TEXTURE0_ARB we pass in 0.
GLuint uniform = glGetUniformLocationARB(g_Shader.GetProgram(), "shadowMap");
glUniform1iARB(uniform, 0);
/////// * /////////// * /////////// * NEW * /////// * /////////// * /////////// *

// Here is where we set the mode and function for shadow mapping with shadow2DProj().
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE_ARB, GL_COMPARE_R_TO_TEXTURE_ARB);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC_ARB, GL_LEQUAL);
// Create our bias matrix to have a 0 to 1 ratio after clip space
const float mBias[] = {0.5, 0.0, 0.0, 0.0,
0.0, 0.5, 0.0, 0.0,
0.0, 0.0, 0.5, 0.0,
0.5, 0.5, 0.5, 1.0};
glMatrixMode(GL_TEXTURE);
glLoadMatrixf(mBias); // The bias matrix to convert to a 0 to 1 ratio
glMultMatrixf(g_mProjection); // The light's projection matrix
glMultMatrixf(g_mModelView); // The light's modelview matrix

/////// * /////////// * /////////// * NEW * /////// * /////////// * /////////// *
// Instead of using texture generation functions that handle the inverse
// camera matrix for us, we calculated this ourselves and need to multiply
// it by the preceding matrices. Remember the equation for projection:
//
// mProjectedTexture = mLightProjection * mLightModelview * mCameraInverse;
//
// We need to use this because we are projecting the shadow map onto the
// world from the light's position. A bit tricky to wrap your head around?
// Keep in mind, the camera's inverse matrix is really the modelview matrix
// inverted with the camera already applied to it.
// Following the above equation, multiply our camera's inverse by the matrices.
glMultMatrixf(g_mCameraInverse);
/////// * /////////// * /////////// * NEW * /////// * /////////// * /////////// *

glMatrixMode(GL_MODELVIEW); // Switch back to normal modelview mode
RenderWorld(); // Render the world that needs to be shadowed
// Now that the world is shadowed and we are done with the texture generation,
// let's set everything back to normal by resetting the texture matrix.
glMatrixMode(GL_TEXTURE);
glLoadIdentity();
glMatrixMode(GL_MODELVIEW);
// Turn the first multi-texture pass off
glActiveTextureARB(GL_TEXTURE0_ARB);
glDisable(GL_TEXTURE_2D);

/////// * /////////// * /////////// * NEW * /////// * /////////// * /////////// *
// Light expected, we need to turn our shader off since we are done
g_Shader.TurnOff();
/////// * /////////// * /////////// * NEW * /////// * /////////// * /////////// *
}
[/code]

ShadowMapping.frag
[code]
uniform sampler2DShadow shadowMap;
varying vec4 projCoord;
void main ()
{
const float kTransparency = 0.3;
vec4 color = gl_Color;
float rValue = shadow2DProj(shadowMap, projCoord).r + kTransparency;
rValue = clamp(rValue, 0.0, 1.0);
vec3 coordPos = projCoord.xyz / projCoord.w;
if(coordPos.x >= 0.0 && coordPos.y >= 0.0 && coordPos.x <= 1.0 && coordPos.y <= 1.0 )
{
gl_FragColor = color * rValue;
}
else
{
gl_FragColor = color;
}
}
[/code]

ShadowMapping.vert
[code]
varying vec4 projCoord;
void main()
{
vec4 realPos = gl_ModelViewMatrix * gl_Vertex;

projCoord = gl_TextureMatrix[0] * realPos;
gl_FrontColor = gl_Color;
gl_Position = ftransform();
}
[/code]
0

Share this post


Link to post
Share on other sites
I rendered the shadow map in the top-left corner and it doesn't show the yellow people for some reason.

[img]http://corpstates.myftp.org/downloads/rendertexture.jpg[/img]
0

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!


Register a new account

Sign in

Already have an account? Sign in here.


Sign In Now
Sign in to follow this  
Followers 0

  • Similar Content

    • By DaniDesu
      #include "MyEngine.h" int main() { MyEngine myEngine; myEngine.run(); return 0; } MyEngine.h
      #pragma once #include "MyWindow.h" #include "MyShaders.h" #include "MyShapes.h" class MyEngine { private: GLFWwindow * myWindowHandle; MyWindow * myWindow; public: MyEngine(); ~MyEngine(); void run(); }; MyEngine.cpp
      #include "MyEngine.h" MyEngine::MyEngine() { MyWindow myWindow(800, 600, "My Game Engine"); this->myWindow = &myWindow; myWindow.createWindow(); this->myWindowHandle = myWindow.getWindowHandle(); // Load all OpenGL function pointers for use gladLoadGLLoader((GLADloadproc)glfwGetProcAddress); } MyEngine::~MyEngine() { this->myWindow->destroyWindow(); } void MyEngine::run() { MyShaders myShaders("VertexShader.glsl", "FragmentShader.glsl"); MyShapes myShapes; GLuint vertexArrayObjectHandle; float coordinates[] = { 0.5f, 0.5f, 0.0f, 0.5f, -0.5f, 0.0f, -0.5f, 0.5f, 0.0f }; vertexArrayObjectHandle = myShapes.drawTriangle(coordinates); while (!glfwWindowShouldClose(this->myWindowHandle)) { glClearColor(0.5f, 0.5f, 0.5f, 1.0f); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Draw something glUseProgram(myShaders.getShaderProgram()); glBindVertexArray(vertexArrayObjectHandle); glDrawArrays(GL_TRIANGLES, 0, 3); glfwSwapBuffers(this->myWindowHandle); glfwPollEvents(); } } MyShaders.h
      #pragma once #include <glad\glad.h> #include <GLFW\glfw3.h> #include "MyFileHandler.h" class MyShaders { private: const char * vertexShaderFileName; const char * fragmentShaderFileName; const char * vertexShaderCode; const char * fragmentShaderCode; GLuint vertexShaderHandle; GLuint fragmentShaderHandle; GLuint shaderProgram; void compileShaders(); public: MyShaders(const char * vertexShaderFileName, const char * fragmentShaderFileName); ~MyShaders(); GLuint getShaderProgram(); const char * getVertexShaderCode(); const char * getFragmentShaderCode(); }; MyShaders.cpp
      #include "MyShaders.h" MyShaders::MyShaders(const char * vertexShaderFileName, const char * fragmentShaderFileName) { this->vertexShaderFileName = vertexShaderFileName; this->fragmentShaderFileName = fragmentShaderFileName; // Load shaders from files MyFileHandler myVertexShaderFileHandler(this->vertexShaderFileName); this->vertexShaderCode = myVertexShaderFileHandler.readFile(); MyFileHandler myFragmentShaderFileHandler(this->fragmentShaderFileName); this->fragmentShaderCode = myFragmentShaderFileHandler.readFile(); // Compile shaders this->compileShaders(); } MyShaders::~MyShaders() { } void MyShaders::compileShaders() { this->vertexShaderHandle = glCreateShader(GL_VERTEX_SHADER); this->fragmentShaderHandle = glCreateShader(GL_FRAGMENT_SHADER); glShaderSource(this->vertexShaderHandle, 1, &(this->vertexShaderCode), NULL); glShaderSource(this->fragmentShaderHandle, 1, &(this->fragmentShaderCode), NULL); glCompileShader(this->vertexShaderHandle); glCompileShader(this->fragmentShaderHandle); this->shaderProgram = glCreateProgram(); glAttachShader(this->shaderProgram, this->vertexShaderHandle); glAttachShader(this->shaderProgram, this->fragmentShaderHandle); glLinkProgram(this->shaderProgram); return; } GLuint MyShaders::getShaderProgram() { return this->shaderProgram; } const char * MyShaders::getVertexShaderCode() { return this->vertexShaderCode; } const char * MyShaders::getFragmentShaderCode() { return this->fragmentShaderCode; } MyWindow.h
      #pragma once #include <glad\glad.h> #include <GLFW\glfw3.h> class MyWindow { private: GLFWwindow * windowHandle; int windowWidth; int windowHeight; const char * windowTitle; public: MyWindow(int windowWidth, int windowHeight, const char * windowTitle); ~MyWindow(); GLFWwindow * getWindowHandle(); void createWindow(); void MyWindow::destroyWindow(); }; MyWindow.cpp
      #include "MyWindow.h" MyWindow::MyWindow(int windowWidth, int windowHeight, const char * windowTitle) { this->windowHandle = NULL; this->windowWidth = windowWidth; this->windowWidth = windowWidth; this->windowHeight = windowHeight; this->windowTitle = windowTitle; glfwInit(); } MyWindow::~MyWindow() { } GLFWwindow * MyWindow::getWindowHandle() { return this->windowHandle; } void MyWindow::createWindow() { // Use OpenGL 3.3 and GLSL 3.3 glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3); glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3); // Limit backwards compatibility glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE); glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE); // Prevent resizing window glfwWindowHint(GLFW_RESIZABLE, GL_FALSE); // Create window this->windowHandle = glfwCreateWindow(this->windowWidth, this->windowHeight, this->windowTitle, NULL, NULL); glfwMakeContextCurrent(this->windowHandle); } void MyWindow::destroyWindow() { glfwTerminate(); } MyShapes.h
      #pragma once #include <glad\glad.h> #include <GLFW\glfw3.h> class MyShapes { public: MyShapes(); ~MyShapes(); GLuint & drawTriangle(float coordinates[]); }; MyShapes.cpp
      #include "MyShapes.h" MyShapes::MyShapes() { } MyShapes::~MyShapes() { } GLuint & MyShapes::drawTriangle(float coordinates[]) { GLuint vertexBufferObject{}; GLuint vertexArrayObject{}; // Create a VAO glGenVertexArrays(1, &vertexArrayObject); glBindVertexArray(vertexArrayObject); // Send vertices to the GPU glGenBuffers(1, &vertexBufferObject); glBindBuffer(GL_ARRAY_BUFFER, vertexBufferObject); glBufferData(GL_ARRAY_BUFFER, sizeof(coordinates), coordinates, GL_STATIC_DRAW); // Dertermine the interpretation of the array buffer glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3*sizeof(float), (void *)0); glEnableVertexAttribArray(0); // Unbind the buffers glBindBuffer(GL_ARRAY_BUFFER, 0); glBindVertexArray(0); return vertexArrayObject; } MyFileHandler.h
      #pragma once #include <cstdio> #include <cstdlib> class MyFileHandler { private: const char * fileName; unsigned long fileSize; void setFileSize(); public: MyFileHandler(const char * fileName); ~MyFileHandler(); unsigned long getFileSize(); const char * readFile(); }; MyFileHandler.cpp
      #include "MyFileHandler.h" MyFileHandler::MyFileHandler(const char * fileName) { this->fileName = fileName; this->setFileSize(); } MyFileHandler::~MyFileHandler() { } void MyFileHandler::setFileSize() { FILE * fileHandle = NULL; fopen_s(&fileHandle, this->fileName, "rb"); fseek(fileHandle, 0L, SEEK_END); this->fileSize = ftell(fileHandle); rewind(fileHandle); fclose(fileHandle); return; } unsigned long MyFileHandler::getFileSize() { return (this->fileSize); } const char * MyFileHandler::readFile() { char * buffer = (char *)malloc((this->fileSize)+1); FILE * fileHandle = NULL; fopen_s(&fileHandle, this->fileName, "rb"); fread(buffer, this->fileSize, sizeof(char), fileHandle); fclose(fileHandle); buffer[this->fileSize] = '\0'; return buffer; } VertexShader.glsl
      #version 330 core layout (location = 0) vec3 VertexPositions; void main() { gl_Position = vec4(VertexPositions, 1.0f); } FragmentShader.glsl
      #version 330 core out vec4 FragmentColor; void main() { FragmentColor = vec4(1.0f, 0.0f, 0.0f, 1.0f); } I am attempting to create a simple engine/graphics utility using some object-oriented paradigms. My first goal is to get some output from my engine, namely, a simple red triangle.
      For this goal, the MyShapes class will be responsible for defining shapes such as triangles, polygons etc. Currently, there is only a drawTriangle() method implemented, because I first wanted to see whether it works or not before attempting to code other shape drawing methods.
      The constructor of the MyEngine class creates a GLFW window (GLAD is also initialized here to load all OpenGL functionality), and the myEngine.run() method in Main.cpp is responsible for firing up the engine. In this run() method, the shaders get loaded from files via the help of my FileHandler class. The vertices for the triangle are processed by the myShapes.drawTriangle() method where a vertex array object, a vertex buffer object and vertrex attributes are set for this purpose.
      The while loop in the run() method should be outputting me the desired red triangle, but all I get is a grey window area. Why?
      Note: The shaders are compiling and linking without any errors.
      (Note: I am aware that this code is not using any good software engineering practices (e.g. exceptions, error handling). I am planning to implement them later, once I get the hang of OpenGL.)

       
    • By KarimIO
      EDIT: I thought this was restricted to Attribute-Created GL contexts, but it isn't, so I rewrote the post.
      Hey guys, whenever I call SwapBuffers(hDC), I get a crash, and I get a "Too many posts were made to a semaphore." from Windows as I call SwapBuffers. What could be the cause of this?
      Update: No crash occurs if I don't draw, just clear and swap.
      static PIXELFORMATDESCRIPTOR pfd = // pfd Tells Windows How We Want Things To Be { sizeof(PIXELFORMATDESCRIPTOR), // Size Of This Pixel Format Descriptor 1, // Version Number PFD_DRAW_TO_WINDOW | // Format Must Support Window PFD_SUPPORT_OPENGL | // Format Must Support OpenGL PFD_DOUBLEBUFFER, // Must Support Double Buffering PFD_TYPE_RGBA, // Request An RGBA Format 32, // Select Our Color Depth 0, 0, 0, 0, 0, 0, // Color Bits Ignored 0, // No Alpha Buffer 0, // Shift Bit Ignored 0, // No Accumulation Buffer 0, 0, 0, 0, // Accumulation Bits Ignored 24, // 24Bit Z-Buffer (Depth Buffer) 0, // No Stencil Buffer 0, // No Auxiliary Buffer PFD_MAIN_PLANE, // Main Drawing Layer 0, // Reserved 0, 0, 0 // Layer Masks Ignored }; if (!(hDC = GetDC(windowHandle))) return false; unsigned int PixelFormat; if (!(PixelFormat = ChoosePixelFormat(hDC, &pfd))) return false; if (!SetPixelFormat(hDC, PixelFormat, &pfd)) return false; hRC = wglCreateContext(hDC); if (!hRC) { std::cout << "wglCreateContext Failed!\n"; return false; } if (wglMakeCurrent(hDC, hRC) == NULL) { std::cout << "Make Context Current Second Failed!\n"; return false; } ... // OGL Buffer Initialization glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT); glBindVertexArray(vao); glUseProgram(myprogram); glDrawElements(GL_TRIANGLES, indexCount, GL_UNSIGNED_SHORT, (void *)indexStart); SwapBuffers(GetDC(window_handle));  
    • By Tchom
      Hey devs!
       
      I've been working on a OpenGL ES 2.0 android engine and I have begun implementing some simple (point) lighting. I had something fairly simple working, so I tried to get fancy and added color-tinting light. And it works great... with only one or two lights. Any more than that, the application drops about 15 frames per light added (my ideal is at least 4 or 5). I know implementing lighting is expensive, I just didn't think it was that expensive. I'm fairly new to the world of OpenGL and GLSL, so there is a good chance I've written some crappy shader code. If anyone had any feedback or tips on how I can optimize this code, please let me know.
       
      Vertex Shader
      uniform mat4 u_MVPMatrix; uniform mat4 u_MVMatrix; attribute vec4 a_Position; attribute vec3 a_Normal; attribute vec2 a_TexCoordinate; varying vec3 v_Position; varying vec3 v_Normal; varying vec2 v_TexCoordinate; void main() { v_Position = vec3(u_MVMatrix * a_Position); v_TexCoordinate = a_TexCoordinate; v_Normal = vec3(u_MVMatrix * vec4(a_Normal, 0.0)); gl_Position = u_MVPMatrix * a_Position; } Fragment Shader
      precision mediump float; uniform vec4 u_LightPos["+numLights+"]; uniform vec4 u_LightColours["+numLights+"]; uniform float u_LightPower["+numLights+"]; uniform sampler2D u_Texture; varying vec3 v_Position; varying vec3 v_Normal; varying vec2 v_TexCoordinate; void main() { gl_FragColor = (texture2D(u_Texture, v_TexCoordinate)); float diffuse = 0.0; vec4 colourSum = vec4(1.0); for (int i = 0; i < "+numLights+"; i++) { vec3 toPointLight = vec3(u_LightPos[i]); float distance = length(toPointLight - v_Position); vec3 lightVector = normalize(toPointLight - v_Position); float diffuseDiff = 0.0; // The diffuse difference contributed from current light diffuseDiff = max(dot(v_Normal, lightVector), 0.0); diffuseDiff = diffuseDiff * (1.0 / (1.0 + ((1.0-u_LightPower[i])* distance * distance))); //Determine attenuatio diffuse += diffuseDiff; gl_FragColor.rgb *= vec3(1.0) / ((vec3(1.0) + ((vec3(1.0) - vec3(u_LightColours[i]))*diffuseDiff))); //The expensive part } diffuse += 0.1; //Add ambient light gl_FragColor.rgb *= diffuse; } Am I making any rookie mistakes? Or am I just being unrealistic about what I can do? Thanks in advance
    • By yahiko00
      Hi,
      Not sure to post at the right place, if not, please forgive me...
      For a game project I am working on, I would like to implement a 2D starfield as a background.
      I do not want to deal with static tiles, since I plan to slowly animate the starfield. So, I am trying to figure out how to generate a random starfield for the entire map.
      I feel that using a uniform distribution for the stars will not do the trick. Instead I would like something similar to the screenshot below, taken from the game Star Wars: Empire At War (all credits to Lucasfilm, Disney, and so on...).

      Is there someone who could have an idea of a distribution which could result in such a starfield?
      Any insight would be appreciated
    • By afraidofdark
      I have just noticed that, in quake 3 and half - life, dynamic models are effected from light map. For example in dark areas, gun that player holds seems darker. How did they achieve this effect ? I can use image based lighting techniques however (Like placing an environment probe and using it for reflections and ambient lighting), this tech wasn't used in games back then, so there must be a simpler method to do this.
      Here is a link that shows how modern engines does it. Indirect Lighting Cache It would be nice if you know a paper that explains this technique. Can I apply this to quake 3' s light map generator and bsp format ?
  • Popular Now