• Announcements

    • khawk

      Download the Game Design and Indie Game Marketing Freebook   07/19/17

      GameDev.net and CRC Press have teamed up to bring a free ebook of content curated from top titles published by CRC Press. The freebook, Practices of Game Design & Indie Game Marketing, includes chapters from The Art of Game Design: A Book of Lenses, A Practical Guide to Indie Game Marketing, and An Architectural Approach to Level Design. The GameDev.net FreeBook is relevant to game designers, developers, and those interested in learning more about the challenges in game development. We know game development can be a tough discipline and business, so we picked several chapters from CRC Press titles that we thought would be of interest to you, the GameDev.net audience, in your journey to design, develop, and market your next game. The free ebook is available through CRC Press by clicking here. The Curated Books The Art of Game Design: A Book of Lenses, Second Edition, by Jesse Schell Presents 100+ sets of questions, or different lenses, for viewing a game’s design, encompassing diverse fields such as psychology, architecture, music, film, software engineering, theme park design, mathematics, anthropology, and more. Written by one of the world's top game designers, this book describes the deepest and most fundamental principles of game design, demonstrating how tactics used in board, card, and athletic games also work in video games. It provides practical instruction on creating world-class games that will be played again and again. View it here. A Practical Guide to Indie Game Marketing, by Joel Dreskin Marketing is an essential but too frequently overlooked or minimized component of the release plan for indie games. A Practical Guide to Indie Game Marketing provides you with the tools needed to build visibility and sell your indie games. With special focus on those developers with small budgets and limited staff and resources, this book is packed with tangible recommendations and techniques that you can put to use immediately. As a seasoned professional of the indie game arena, author Joel Dreskin gives you insight into practical, real-world experiences of marketing numerous successful games and also provides stories of the failures. View it here. An Architectural Approach to Level Design This is one of the first books to integrate architectural and spatial design theory with the field of level design. The book presents architectural techniques and theories for level designers to use in their own work. It connects architecture and level design in different ways that address the practical elements of how designers construct space and the experiential elements of how and why humans interact with this space. Throughout the text, readers learn skills for spatial layout, evoking emotion through gamespaces, and creating better levels through architectural theory. View it here. Learn more and download the ebook by clicking here. Did you know? GameDev.net and CRC Press also recently teamed up to bring GDNet+ Members up to a 20% discount on all CRC Press books. Learn more about this and other benefits here.
Sign in to follow this  
Followers 0
game of thought

Maximising server output

2 posts in this topic

I mean as in support of players and map. Say i had 10 intergers containing position, health etc. and they use an average of 10 mathematical operations per frame. And then say it is 30 fps(as in packets per second). Would that use 3000 cpu cycles per second per player? and saying that each number is and average of 3 bytes would that send 30 bytes a packet, which is there for 900 bytes a second.

Am i barking up the wrong tree? Thank you for you time
0

Share this post


Link to post
Share on other sites
CPU cycles are a moot point, unless you go into a very large number of players. Things that you don't run on players (AI) would cost more. Code performance is more sensitive to your design than the actual number of operations. Cache misses, critical sections, poorly optimised floating point libraries, for example.

As for bandwidth usage, yeah. You take how much data you need to send per players, the frequency, and that gives you a rough estimated bandwidth cost. Also not forgetting overheads, like UDP overheads for every packet you send, which in practise cost a fair chunk of your bandwidth as your send frequency increases (sometimes more than the actual game data). TCP also has an extra associated cost if you end up having to deal with a lot of packet loss (meaning, resends).
0

Share this post


Link to post
Share on other sites
No, cycles don't work like that, for several reasons.

The most important one is that math is pretty much "free" these days; the cost is how fast you can get the needed data into and out of cache where the CPU can get at it.

Another important reason is that the algorithms you use will typically grow by the order of n-squared in the number of players involved. If you have 10 players, then each of ten players need to check collision against 10 other players, and you also need to send data about 10 players to 10 players, so, 100 data "items" to send. If you have 100 players, then each of 100 players need to check collision against 100 other players, and you also need to send data about 100 players to 100 players, so, 10,000 data "items" to send.

The final important reason is that it's unlikely for a server to have more than 100 Mbit of Internet bandwidth for itself. Yes, there are bigger pipes to be had (we have them at work :-) but those pipes are generally served by a larger amount of servers. So, with 100 Mbit of Internet bandwidth, that's about 10 Mbyte per second of data you can send and/or receive. With a 50 Gbyte per second memory bandwidth in a typical server, you can touch each byte 5,000 times for each time you send it on the network.

When it comes to performance tuning and capacity planning, the most important thing is to characterize your load, typically using measurements. Build what you need to build, then measure it under different kinds of load, along a number of axes (CPU usage, memory usage, network usage, latency, power, etc.) Once you have that data, you can do suitable capacity planning for whatever you're trying to accomplish.

If you have to design for a particular cost or performance target, then it's important that you specify the specific target along all axes up front. Then plan for what you can deliver within that performance goal (typically requires lots of experience to get this part right.) Then continually measure yourself against that target using realistic benchmarks. After each code checkin and build, run a target system at the planned target load (typically synthetically generated,) and make sure it performs according to target specifications (number of physics steps/second, amount of RAM consumed, amount of network bandwidth used, etc.)
0

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!


Register a new account

Sign in

Already have an account? Sign in here.


Sign In Now
Sign in to follow this  
Followers 0