• Announcements

    • khawk

      Download the Game Design and Indie Game Marketing Freebook   07/19/17

      GameDev.net and CRC Press have teamed up to bring a free ebook of content curated from top titles published by CRC Press. The freebook, Practices of Game Design & Indie Game Marketing, includes chapters from The Art of Game Design: A Book of Lenses, A Practical Guide to Indie Game Marketing, and An Architectural Approach to Level Design. The GameDev.net FreeBook is relevant to game designers, developers, and those interested in learning more about the challenges in game development. We know game development can be a tough discipline and business, so we picked several chapters from CRC Press titles that we thought would be of interest to you, the GameDev.net audience, in your journey to design, develop, and market your next game. The free ebook is available through CRC Press by clicking here. The Curated Books The Art of Game Design: A Book of Lenses, Second Edition, by Jesse Schell Presents 100+ sets of questions, or different lenses, for viewing a game’s design, encompassing diverse fields such as psychology, architecture, music, film, software engineering, theme park design, mathematics, anthropology, and more. Written by one of the world's top game designers, this book describes the deepest and most fundamental principles of game design, demonstrating how tactics used in board, card, and athletic games also work in video games. It provides practical instruction on creating world-class games that will be played again and again. View it here. A Practical Guide to Indie Game Marketing, by Joel Dreskin Marketing is an essential but too frequently overlooked or minimized component of the release plan for indie games. A Practical Guide to Indie Game Marketing provides you with the tools needed to build visibility and sell your indie games. With special focus on those developers with small budgets and limited staff and resources, this book is packed with tangible recommendations and techniques that you can put to use immediately. As a seasoned professional of the indie game arena, author Joel Dreskin gives you insight into practical, real-world experiences of marketing numerous successful games and also provides stories of the failures. View it here. An Architectural Approach to Level Design This is one of the first books to integrate architectural and spatial design theory with the field of level design. The book presents architectural techniques and theories for level designers to use in their own work. It connects architecture and level design in different ways that address the practical elements of how designers construct space and the experiential elements of how and why humans interact with this space. Throughout the text, readers learn skills for spatial layout, evoking emotion through gamespaces, and creating better levels through architectural theory. View it here. Learn more and download the ebook by clicking here. Did you know? GameDev.net and CRC Press also recently teamed up to bring GDNet+ Members up to a 20% discount on all CRC Press books. Learn more about this and other benefits here.
Sign in to follow this  
Followers 0
CryZe

Blinn-Phong Specular Exponent to Trowbridge-Reitz Roughness

2 posts in this topic

Is there a good formula to convert the specular exponent (glossiness) of the Blinn-Phong NDF to the roughness value of the Trowbridge-Reitz NDF?
I've tried something like [eqn]\frac{1}{\sqrt{\alpha}}[/eqn], but that doesn't work that well. Is there a better approximation?

I'm currently changing the BRDF to an actual Cook-Torrance BRDF with Trowbridge-Reitz distribution, Schlick fresnel and Smith-Trowbridge-Reitz geometry factor. The BRDF itself is only 27 clock cycles on a Fermi or Kepler GPU (NDotL, NDotH, LDotH, ... not included). It's fast enough, so there's no reason for me to use a weak approximation of Cook-Torrance. But all my models are still storing Blinn-Phong glossiness, that's why I need to convert them.

I actually would want to use an approximation for [eqn]1+\sqrt{1+\alpha\frac{\sqrt{1-(N\cdot L)^2}}{N\cdot L}}[/eqn] though. That's the worst part of the whole BRDF. The 2 square roots alone take 12 clock cycles [img]http://public.gamedev.net//public/style_emoticons/default/sad.png[/img] Edited by CryZe
1

Share this post


Link to post
Share on other sites
Damn google! I just searched for "Trowbridge Reitz", and despite this being a 70's publication, this thread came up as the 3rd result!

You could always brute-force yourself a conversion look-up table. Render a couple-hundred spheres with a single point light and your full range of spec-power and roughness values. Then compare each "power" image against each "roughness" image to find which one produces the least error, and use that to generate a LUT converter. Repeat with different lighting angles, and average the resulting roughness suggestions for robustness [img]http://public.gamedev.net//public/style_emoticons/default/unsure.png[/img]
1

Share this post


Link to post
Share on other sites
If no one comes up with a solution, I'm probably going to do that. Too bad that the Trowbridge-Reitz NDF isn't that well known [img]http://public.gamedev.net//public/style_emoticons/default/sad.png[/img]
I could try modifying the conversion function for Beckmann roughness, because they might not differ that much. Beckmann is more well known, so what's the conversion function for the Beckmann NDF?

Update: This, is the approximation I came up with:
[eqn]f(\alpha)=
\begin{cases}
0.773871 - 0.160132 \ln(\alpha) & \alpha\in [0,24] \\
0.606127 - 0.105979 \ln(\alpha) & \alpha\in (24,60] \\
0.4008 - 0.0562807 \ln(\alpha) & \alpha\in (60,\infty)
\end{cases}[/eqn] Edited by CryZe
0

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!


Register a new account

Sign in

Already have an account? Sign in here.


Sign In Now
Sign in to follow this  
Followers 0