• Announcements

    • khawk

      Download the Game Design and Indie Game Marketing Freebook   07/19/17

      GameDev.net and CRC Press have teamed up to bring a free ebook of content curated from top titles published by CRC Press. The freebook, Practices of Game Design & Indie Game Marketing, includes chapters from The Art of Game Design: A Book of Lenses, A Practical Guide to Indie Game Marketing, and An Architectural Approach to Level Design. The GameDev.net FreeBook is relevant to game designers, developers, and those interested in learning more about the challenges in game development. We know game development can be a tough discipline and business, so we picked several chapters from CRC Press titles that we thought would be of interest to you, the GameDev.net audience, in your journey to design, develop, and market your next game. The free ebook is available through CRC Press by clicking here. The Curated Books The Art of Game Design: A Book of Lenses, Second Edition, by Jesse Schell Presents 100+ sets of questions, or different lenses, for viewing a game’s design, encompassing diverse fields such as psychology, architecture, music, film, software engineering, theme park design, mathematics, anthropology, and more. Written by one of the world's top game designers, this book describes the deepest and most fundamental principles of game design, demonstrating how tactics used in board, card, and athletic games also work in video games. It provides practical instruction on creating world-class games that will be played again and again. View it here. A Practical Guide to Indie Game Marketing, by Joel Dreskin Marketing is an essential but too frequently overlooked or minimized component of the release plan for indie games. A Practical Guide to Indie Game Marketing provides you with the tools needed to build visibility and sell your indie games. With special focus on those developers with small budgets and limited staff and resources, this book is packed with tangible recommendations and techniques that you can put to use immediately. As a seasoned professional of the indie game arena, author Joel Dreskin gives you insight into practical, real-world experiences of marketing numerous successful games and also provides stories of the failures. View it here. An Architectural Approach to Level Design This is one of the first books to integrate architectural and spatial design theory with the field of level design. The book presents architectural techniques and theories for level designers to use in their own work. It connects architecture and level design in different ways that address the practical elements of how designers construct space and the experiential elements of how and why humans interact with this space. Throughout the text, readers learn skills for spatial layout, evoking emotion through gamespaces, and creating better levels through architectural theory. View it here. Learn more and download the ebook by clicking here. Did you know? GameDev.net and CRC Press also recently teamed up to bring GDNet+ Members up to a 20% discount on all CRC Press books. Learn more about this and other benefits here.

Archived

This topic is now archived and is closed to further replies.

davidko

view-dependent orientation

1 post in this topic

Okay, this problem is much easier to visualize than to explain, so please bear with me... Say you have a triangle with an inherit orientation vector (picture this as an arrow plastered on the triangle pointing "north"). If you render this triangle to the screen, the vector will, of course, follow however you rotate the triangle. In screen space, you will see this vector''s orientation moving around in circles on the screen''s "z"-axis (I''m sure you know what I mean when I say the screen''s z-axis). Now my problem is, I want to determine the screen-space unit vector that describes orientation of the triangle, once that triangle is projected to the screen. One way you could probably do it is by projecting the orientation vector onto the viewplane, and then renormalizing. But I need a faster way to do this, especially without having to project anything...preferably a method where once you know the rotation being applied to the triangle, and the original triangle''s orientation, you can calculate an angle (relative to the screen-space orientation vector before the rotation). Does this make sense? It doesn''t have to be completely accurate, either, although that would be nice.
0

Share this post


Link to post
Share on other sites
Hmmm, I can''t think of a faster method than what you described, transforming and normalizing.

If you''re willing to sacrifice accuracy for speed in your normalization, you should check out this thread at FlipCode. The first post includes an inverse square root approximation function for floats.

You mentioned some stuff about angles which I didn''t really understand... in any case, if you wanted to somehow go from an angle to your final 2D vector, that would involve sin/cos, which is just about as expensive as the sqrt in normalizing, so I don''t see that being any faster.
0

Share this post


Link to post
Share on other sites