• Announcements

    • khawk

      Download the Game Design and Indie Game Marketing Freebook   07/19/17

      GameDev.net and CRC Press have teamed up to bring a free ebook of content curated from top titles published by CRC Press. The freebook, Practices of Game Design & Indie Game Marketing, includes chapters from The Art of Game Design: A Book of Lenses, A Practical Guide to Indie Game Marketing, and An Architectural Approach to Level Design. The GameDev.net FreeBook is relevant to game designers, developers, and those interested in learning more about the challenges in game development. We know game development can be a tough discipline and business, so we picked several chapters from CRC Press titles that we thought would be of interest to you, the GameDev.net audience, in your journey to design, develop, and market your next game. The free ebook is available through CRC Press by clicking here. The Curated Books The Art of Game Design: A Book of Lenses, Second Edition, by Jesse Schell Presents 100+ sets of questions, or different lenses, for viewing a game’s design, encompassing diverse fields such as psychology, architecture, music, film, software engineering, theme park design, mathematics, anthropology, and more. Written by one of the world's top game designers, this book describes the deepest and most fundamental principles of game design, demonstrating how tactics used in board, card, and athletic games also work in video games. It provides practical instruction on creating world-class games that will be played again and again. View it here. A Practical Guide to Indie Game Marketing, by Joel Dreskin Marketing is an essential but too frequently overlooked or minimized component of the release plan for indie games. A Practical Guide to Indie Game Marketing provides you with the tools needed to build visibility and sell your indie games. With special focus on those developers with small budgets and limited staff and resources, this book is packed with tangible recommendations and techniques that you can put to use immediately. As a seasoned professional of the indie game arena, author Joel Dreskin gives you insight into practical, real-world experiences of marketing numerous successful games and also provides stories of the failures. View it here. An Architectural Approach to Level Design This is one of the first books to integrate architectural and spatial design theory with the field of level design. The book presents architectural techniques and theories for level designers to use in their own work. It connects architecture and level design in different ways that address the practical elements of how designers construct space and the experiential elements of how and why humans interact with this space. Throughout the text, readers learn skills for spatial layout, evoking emotion through gamespaces, and creating better levels through architectural theory. View it here. Learn more and download the ebook by clicking here. Did you know? GameDev.net and CRC Press also recently teamed up to bring GDNet+ Members up to a 20% discount on all CRC Press books. Learn more about this and other benefits here.
Sign in to follow this  
Followers 0
RasterGuy

OpenGL
OpenGL Perspective Projection and the View Plane

6 posts in this topic

Hi guys,

I'm having a little trouble wrapping my mind completely around the perspective projection and the relationship to the view plane. A little background:[list]
[*]I'm working on a 3D Software Renderer.
[*]I'm reading Lengyel's "Mathematics for 3D Game Programming and Computer Graphics" (I've added a link at the end to a preview in Google Books, has a good chunk of what I'm reading at least, pp. 111 and on.)
[/list]
So, I understand that a basic perspective projection can be achieved with (obviously the matrix is over kill):

[ 1 0 0 0 ]
[ 0 1 0 0 ]
[ 0 0 1 0 ]
[ 0 0 1/e 1 ]

Where e is the distance to the view-plane(focal length) as a function of the horizontal FOV.

This would correctly project points/vertices, but would not perform any clipping.

I know that the OpenGL projection matrix transforms all of the points into homogeneous clip-space (transforming the view-frustum to a cuboid), and makes clipping to the frustum much more simple. (The matrix can be seen on pp. 124 linked below, labeled Mfrustum)

I also see how the focal length determines the normals from the frustum planes, as well as the aspect ratio's role in the frustum plane normals.

What I don't understand completely, is that, both e(focal length) and the aspect ratio seem to have no contribution to the perspective projection matrix. Is the actual projection a final step after transforming to clip-space (and doing the clipping)? Is OpenGL doing something extra behind the scenes? (recall, I'm working on a software renderer) More over, what is the view-plane's relation to the view-frustum?

I hope my question makes sense, if not I will be happy to rephrase or elaborate. I appreciate and knowledge you can share.


Book Preview:

[url="http://books.google.com/books?id=bfcLeqRUsm8C&pg=PA115&lpg=PA115&dq=frustum+plane+normal&source=bl&ots=FqTvf6tUfB&sig=habQb5--rTggjW1ilsbDvv-4eD8&hl=en&sa=X&ei=5nxjUO_fO-XW2AX2zIDAAg&ved=0CEYQ6AEwBDgK#v=onepage&q=frustum%20plane%20normal&f=false"]http://books.google.... normal&f=false[/url] Edited by RasterGuy
0

Share this post


Link to post
Share on other sites
[quote name='Brother Bob' timestamp='1348700869' post='4984154']
The focal length and aspect ratio are determined from the parameters used in the equation in the book. For example, the aspect ration is [i](r-l)/(t-b)[/i] and the focal length (as you appear to be defining it) is [i]n/(t-b)[/i].
[/quote]

Thanks Brother Bob,

I guess I need to go over it some more. It seems like, in the book, the near plane is actually replacing the view/projection plane. Is that right? I apologize if this is obvious, but I seem to stumbling on it for one reason or another.
0

Share this post


Link to post
Share on other sites
There really is no [i]the[/i] projection plane, but [i]a[/i] projection plane. Within the view volume, you can slide the projection plane as you like along the depth axis without changing what is projected onto the plane relative the size of the view volume at the depth where the projection plane is positioned. You can think of the near plane as the projection plane, but you can also think of the far plane as the projection plane, or almost [i]any[/i] plane along the depth axis whether it's inside or outside the actual view volume.

If you want to think of a concrete projection plane to visualize how everything works, the near plane is probably the easiest plane to think of as the projection plane.

Keep in mind here that talking about an absolute focal length is not really relevant as it says nothing about how the view volume looks. The focal length only makes sense when you also have the size of a projection plane. In that case, the relevant number is the ratio between the focal length and the size of the projection plane. For a camera analogy, a 50mm focal length lens says nothing about what the picture from it will look like (I'm talking about perspective effects only), unless you also say that you either have, say, a 24mm or 35mm film/sensor. The ratio between the two is related to the tangent of the field of view.

If you look at the equation I mentioned about the focal length, you will see that it is a normalized focal length. The value [i]n/(b-t)[/i] is the ratio of the distance to the near plane and the size of the near clip plane (in the vertical direction in this case). This is the general case where you can define the size of the near clip plane and the distance of it from the view point. In your case, you have an implicit size of the projection plane equal to 2 (from -1 to +1), and your parameter [i]e[/i] is in relation to this size.
2

Share this post


Link to post
Share on other sites
Thanks Bob,

I think that is what I was trying to come to. That helps a lot, starting to see the forest now, I think.
0

Share this post


Link to post
Share on other sites
I'm pretty sure you are missing only one thing, because it is an obscure one...
everything in the projected vector is divided by w afterward by the rasterizer.

so, the projection matrix actually doesn't do anything really, apart from copying z into w. then the real "perspective division", like we call it, is done in a hidden step afterward.
you can do it yourself if you are coding a projection by hand on CPU (or even in shader) by doing Vproj = Vworld * WorldViewProjMatrix; Vproj /= Vproj.w;

there you go.

it is really easy to understand actually : the farther the points, the closer to the center of the view. that is how one creates parallax effects. (think of scolling planes with different speeds according to distances, or also, think of convergence lines in a drawing of a cube. further points are closer together.

then the focal enters in the equation as a multiplier for the perspective effect. the larger the FOV the stronger the "gather to the center division effect" will be. that is all :)
1

Share this post


Link to post
Share on other sites
Thank you Lightness,

That definitely makes sense and kind of ties everything together. I really appreciate your input =)
0

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!


Register a new account

Sign in

Already have an account? Sign in here.


Sign In Now
Sign in to follow this  
Followers 0

  • Similar Content

    • By mapra99
      Hello

      I am working on a recent project and I have been learning how to code in C# using OpenGL libraries for some graphics. I have achieved some quite interesting things using TAO Framework writing in Console Applications, creating a GLUT Window. But my problem now is that I need to incorporate the Graphics in a Windows Form so I can relate the objects that I render with some .NET Controls.

      To deal with this problem, I have seen in some forums that it's better to use OpenTK instead of TAO Framework, so I can use the glControl that OpenTK libraries offer. However, I haven't found complete articles, tutorials or source codes that help using the glControl or that may insert me into de OpenTK functions. Would somebody please share in this forum some links or files where I can find good documentation about this topic? Or may I use another library different of OpenTK?

      Thanks!
    • By Solid_Spy
      Hello, I have been working on SH Irradiance map rendering, and I have been using a GLSL pixel shader to render SH irradiance to 2D irradiance maps for my static objects. I already have it working with 9 3D textures so far for the first 9 SH functions.
      In my GLSL shader, I have to send in 9 SH Coefficient 3D Texures that use RGBA8 as a pixel format. RGB being used for the coefficients for red, green, and blue, and the A for checking if the voxel is in use (for the 3D texture solidification shader to prevent bleeding).
      My problem is, I want to knock this number of textures down to something like 4 or 5. Getting even lower would be a godsend. This is because I eventually plan on adding more SH Coefficient 3D Textures for other parts of the game map (such as inside rooms, as opposed to the outside), to circumvent irradiance probe bleeding between rooms separated by walls. I don't want to reach the 32 texture limit too soon. Also, I figure that it would be a LOT faster.
      Is there a way I could, say, store 2 sets of SH Coefficients for 2 SH functions inside a texture with RGBA16 pixels? If so, how would I extract them from inside GLSL? Let me know if you have any suggestions ^^.
    • By KarimIO
      EDIT: I thought this was restricted to Attribute-Created GL contexts, but it isn't, so I rewrote the post.
      Hey guys, whenever I call SwapBuffers(hDC), I get a crash, and I get a "Too many posts were made to a semaphore." from Windows as I call SwapBuffers. What could be the cause of this?
      Update: No crash occurs if I don't draw, just clear and swap.
      static PIXELFORMATDESCRIPTOR pfd = // pfd Tells Windows How We Want Things To Be { sizeof(PIXELFORMATDESCRIPTOR), // Size Of This Pixel Format Descriptor 1, // Version Number PFD_DRAW_TO_WINDOW | // Format Must Support Window PFD_SUPPORT_OPENGL | // Format Must Support OpenGL PFD_DOUBLEBUFFER, // Must Support Double Buffering PFD_TYPE_RGBA, // Request An RGBA Format 32, // Select Our Color Depth 0, 0, 0, 0, 0, 0, // Color Bits Ignored 0, // No Alpha Buffer 0, // Shift Bit Ignored 0, // No Accumulation Buffer 0, 0, 0, 0, // Accumulation Bits Ignored 24, // 24Bit Z-Buffer (Depth Buffer) 0, // No Stencil Buffer 0, // No Auxiliary Buffer PFD_MAIN_PLANE, // Main Drawing Layer 0, // Reserved 0, 0, 0 // Layer Masks Ignored }; if (!(hDC = GetDC(windowHandle))) return false; unsigned int PixelFormat; if (!(PixelFormat = ChoosePixelFormat(hDC, &pfd))) return false; if (!SetPixelFormat(hDC, PixelFormat, &pfd)) return false; hRC = wglCreateContext(hDC); if (!hRC) { std::cout << "wglCreateContext Failed!\n"; return false; } if (wglMakeCurrent(hDC, hRC) == NULL) { std::cout << "Make Context Current Second Failed!\n"; return false; } ... // OGL Buffer Initialization glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT); glBindVertexArray(vao); glUseProgram(myprogram); glDrawElements(GL_TRIANGLES, indexCount, GL_UNSIGNED_SHORT, (void *)indexStart); SwapBuffers(GetDC(window_handle));  
    • By Tchom
      Hey devs!
       
      I've been working on a OpenGL ES 2.0 android engine and I have begun implementing some simple (point) lighting. I had something fairly simple working, so I tried to get fancy and added color-tinting light. And it works great... with only one or two lights. Any more than that, the application drops about 15 frames per light added (my ideal is at least 4 or 5). I know implementing lighting is expensive, I just didn't think it was that expensive. I'm fairly new to the world of OpenGL and GLSL, so there is a good chance I've written some crappy shader code. If anyone had any feedback or tips on how I can optimize this code, please let me know.
       
      Vertex Shader
      uniform mat4 u_MVPMatrix; uniform mat4 u_MVMatrix; attribute vec4 a_Position; attribute vec3 a_Normal; attribute vec2 a_TexCoordinate; varying vec3 v_Position; varying vec3 v_Normal; varying vec2 v_TexCoordinate; void main() { v_Position = vec3(u_MVMatrix * a_Position); v_TexCoordinate = a_TexCoordinate; v_Normal = vec3(u_MVMatrix * vec4(a_Normal, 0.0)); gl_Position = u_MVPMatrix * a_Position; } Fragment Shader
      precision mediump float; uniform vec4 u_LightPos["+numLights+"]; uniform vec4 u_LightColours["+numLights+"]; uniform float u_LightPower["+numLights+"]; uniform sampler2D u_Texture; varying vec3 v_Position; varying vec3 v_Normal; varying vec2 v_TexCoordinate; void main() { gl_FragColor = (texture2D(u_Texture, v_TexCoordinate)); float diffuse = 0.0; vec4 colourSum = vec4(1.0); for (int i = 0; i < "+numLights+"; i++) { vec3 toPointLight = vec3(u_LightPos[i]); float distance = length(toPointLight - v_Position); vec3 lightVector = normalize(toPointLight - v_Position); float diffuseDiff = 0.0; // The diffuse difference contributed from current light diffuseDiff = max(dot(v_Normal, lightVector), 0.0); diffuseDiff = diffuseDiff * (1.0 / (1.0 + ((1.0-u_LightPower[i])* distance * distance))); //Determine attenuatio diffuse += diffuseDiff; gl_FragColor.rgb *= vec3(1.0) / ((vec3(1.0) + ((vec3(1.0) - vec3(u_LightColours[i]))*diffuseDiff))); //The expensive part } diffuse += 0.1; //Add ambient light gl_FragColor.rgb *= diffuse; } Am I making any rookie mistakes? Or am I just being unrealistic about what I can do? Thanks in advance
    • By yahiko00
      Hi,
      Not sure to post at the right place, if not, please forgive me...
      For a game project I am working on, I would like to implement a 2D starfield as a background.
      I do not want to deal with static tiles, since I plan to slowly animate the starfield. So, I am trying to figure out how to generate a random starfield for the entire map.
      I feel that using a uniform distribution for the stars will not do the trick. Instead I would like something similar to the screenshot below, taken from the game Star Wars: Empire At War (all credits to Lucasfilm, Disney, and so on...).

      Is there someone who could have an idea of a distribution which could result in such a starfield?
      Any insight would be appreciated
  • Popular Now