• Advertisement
Sign in to follow this  

OpenGL Missing GL_ARB_robustness

This topic is 1935 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

If you intended to correct an error in the post then please contact us.

Recommended Posts

To add to the ever growing ways in which OpenGL simply confuses the crap out of me, I have noticed when inspecting GL_EXTENSIONS and wglGetExtensionsStringARB that neither GL_ARB_robustness or WGL_ARB_create_context_robustness appear.

Doesn't [b]ARB[/b] mean that they are part of the core api? I didn't think these sorts of things were optional.

Edit: Same goes for GL_ARB_debug_output and GL_ARB_cl_event. I'm starting to wonder what the phrase "OpenGL 4.2" support is even supposed to mean.

[AMD HD 5850 / Windows 8 / 3.3/4.2 Core Profile Forward Compat] Edited by Chris_F

Share this post


Link to post
Share on other sites
Advertisement
The ARB tag means that it's an ARB approved extension. Core functions have no extension tag at all. If it's not in the list, then is simply means it's not supported by the driver. I quickly checked around for extension support, and indeed it looks like AMD drivers doesn't provide that extension.

Share this post


Link to post
Share on other sites
[quote name='Brother Bob' timestamp='1348770239' post='4984438']
The ARB tag means that it's an ARB approved extension. Core functions have no extension tag at all. If it's not in the list, then is simply means it's not supported by the driver. I quickly checked around for extension support, and indeed it looks like AMD drivers doesn't provide that extension.
[/quote]

What do you mean?

e.g.

[b]ARB[/b]_geometry_shader4

Notice the ARB? ARB_geometry_shader4 is supposedly a core part of OGL 3.2. Edited by Chris_F

Share this post


Link to post
Share on other sites
It is an extension, but it is an extension that has been promoted to the core API after it has been widely adopted and accepted. When it was promoted from extension to core function, it is entirely possible that functions change in the way they work, or that function names change (not counting dropping the ARB suffix), or that functions are removed entirely.

Lets say that there is an extension GL_ARB_foo which has a function named glFooARB. The extension is widely adopted and promoted to the core in version X of OpenGL. When promoted to the core, the extension suffix is dropped, and the function name becomes glFoo. At this point, a driver that doesn't provide support for OpenGL version X can choose to support GL_ARB_foo and must subsequently provide the function glFooARB. Once the driver implements OpenGL version X or later, it must now provide the function named glFoo since that is what's required for version X.

The driver can, if it chooses, provide an implementation for version X but not announce support for GL_ARB_foo. There is nothing wrong here, because GL_ARB_foo itself is not a part of the core API, but the function it provided was.

A driver is only required to provide functions for the version it claims to support and for the extensions listed in the extension string. If the extension string does not include GL_ARB_foo, then glFooARB is not provided. If version X is provided but GL_ARB_foo is not listed, then glFoo is available but not glFooARB, even though they may be the exact same functions.

If you look in the specification for ARB_geometry_shader4, you will see that all new functions has an ARB-suffix. This denotes that the function belongs to an ARB extension. If you look up the core API specification you will see that the corresponding functions does not have the ARB suffix. They are different functions as far as the specification goes. Edited by Brother Bob

Share this post


Link to post
Share on other sites
So if I understand correctly, the way it works is that anyone can create an extension to OpenGL, which would then have the suffix EXT. If the Architecture Review Board likes a particular extension, they can promote it to a ARB suffix which is their way of showing support for it, in hopes most likely that more vendors will implement it. Then if all goes well, it (or something very similar) could be incorporated into the Core spec where it looses all suffixes.

Share this post


Link to post
Share on other sites
In essence, yes, that's how it goes. Although the EXT-tag is an intermediate step between an individually proposed extension and a full ARB approved extension. Extensions typically start at a vendor-level with tags like NV, ATI, SGI, INTEL and AMD. The EXT-tag is for extensions that are supported by multiple vendors, and the ARB is the last step when it has more or less full vendor support. Extensions can also start as collaborations between vendors also and start directly at the EXT or even the ARB tag.

It typically goes both ways, but normally ARB approves common extensions and much less often approves them to promote them. And yes, anyone is free to write and submit an extension, but vendors are equally free to not implement it, and the ARB is also free to not allocate for example unique identifiers for any constants you define.

But note that, as was mentioning in the foo extension example, that each promotion, be it to another tag or to the core API, technically creates a completely new set of functions and symbols. It is not correct to check the extension string for GL_ARB_foo to verify that foo is supported and then proceed to use glFoo(), since the two are from different sets; one from the extension and one from the core, and the presence of one does not imply the presence of the other.

That is why you may not have seen the robustness extension even though version 4.3 was reported; version 4.3 does not imply the presence of the extension, but it does guarantee the presence of the core-promoted functions.

Share this post


Link to post
Share on other sites
OK, I find that I am still having trouble understanding this.

For example, take this excerpt from Wikipedia about OpenGL 4.2:

[quote]Support for shaders with atomic counters and load/store/atomic read-modify-write operations to a single level of a texture.[/quote]

Does this mean that OpenGL 4.2 has [b]guaranteed[/b] support for atomic counters, or does it just mean that starting with OpenGL 4.2 GL_ARB_shader_atomic_counters [i]might[/i] be available on supporting hardware.

I'm also trying to figure out whether GL_ARB_robustness was made core in version 4.3. I have no interest in thing which only [i]might[/i] be available. Edited by Chris_F

Share this post


Link to post
Share on other sites
Fair warning that this may confuse you even more.

In the past extensions worked much like Brother Bob described. In recent GL_VERSIONs many ARB extensions have worked slightly different; a new GL_VERSION is released accompanied by a slew of extensions which are not part of it but which serve the purpose of enabling exposure of as much functionality from that version on older hardware as possible. This is effectively the opposite of the previous mechanism; rather than gathering together a bunch of previously existing extensions and making a new GL_VERSION including them in core, these newer versions instead define a new spec and spawn new extensions out of it for use by older hardware.

So to answer your question: if a piece of functionality is included in GL4.3 then you're guaranteed availability of it on all GL4.3 hardware. You don't need to check the extension string; once you see 4.3 in the GL_VERSION string you can just load any required entry points ([i]without[/i] the -ARB suffix) and start using it.

If the hardware is not GL4.3 capable then it [u]may[/u] still be able to support the functionality, but as an extension. So query the extension string, see if GL_ARB_whatever is present, load the entry points, run any further checks you might need (these will be documented in the extension documentation) and use it.

Now to go down the rabbit hole.

In the past entry points and GLenums for all -ARB extensions had an ARB suffix on them; you can still find old VBO tutorials (for example) that use glGenBuffersARB, glBindBufferARB, GL_ARRAY_BUFFER_ARB, and so on. Once these extensions moved into core you would use the versions without the suffix which were normally (but not always - GL_ARB_shader_objects is a case in point) otherwise absolutely identical. If an extension is in core then drivers don't [u]have[/u] to export the extension string any more, but as a general rule they always will in order to provide support for existing programs that may have used the extension version of a piece of functionality. So while that [u]can[/u] be relied on, strictly speaking it [u]shouldn't[/u] be.

These newer extensions don't always have an -ARB suffix present. See issue number 6 in the documentation for GL_ARB_vertex_array_object for the reasoning behind this: [url="http://www.opengl.org/registry/specs/ARB/vertex_array_object.txt"]http://www.opengl.or...rray_object.txt[/url].

If by now your head is spinning a little then I don't really blame you; it can be quite bewildering on first encounter for sure, so the best approach might be to dive in and start writing some code. That may be an easier way for you to get your head around the way these things interact and interoperate. Edited by mhagain

Share this post


Link to post
Share on other sites
Everything said by Brother Bob and Mhagain is correst, but maybe it sounds a little bit complicated (although it is not).
Let me try to make it clear...

1. Not anyone, but only hardware vendors can make extensions. It is logical since extensions are part of the drivers, and only driver writers know what their hardware supports.

2. If only one vendor supports some functionality, then appropriate prefix/suffix is used (NV, AMD,...) Sorry, Brother Bob, for repeating this.

3. If at least two vendors support some functionality, then EXT prefix/suffix is used (prefix for constants, suffix for functions).

4. If at least two vendors support some functionality, and the committee (ARB) decides it is something that should be a part of the core, the prefix/suffix changes to ARB.

5. Almost all ARB extensions become core functionality in the next revision of OpenGL. In the recent years, ARB extensions are published at the same time with the new release of the specification of the core, so ARB overnight becomes core. Core names lose ARB prefix/suffix.

6. If the driver supports particular ARB extension it also supports core equivalent (please correct me if I'm wrong; maybe there were some functions differ from the core version in the list of parameters), and vice versa. I saw a lot of advices on the forums claiming that ARB version of the function should not be used if the core version exists. Well, if the core version exists, both ARB and core functions point to the same entry. The function pointers are identical. Do you think driver writers would implement several version of the same function? Be aware, OpenGL is a mammoth with decades of adding new functions. Also, it doesn't matter how the function is named. You can use whatever name you want as long as you are accessing the right pointer. void glVertexAttrib1f (GLuint index, GLfloat x) has the same functionality as void Marry (GLuint index, GLfloat x) if they point to the same entry, have the same return-value and use the same parameters.

7. The extensions names returned by glGetStringi(GL_EXTENSIONS, i) should report the functionality. If there is no adequate ARB string, the functionality is probably not supported even if should be included into the core of the version the driver supports. You can be a 100% sure only after retrieving the function pointer and try to execute it properly. Considering OPs question, I can bet that mentioned functionality (part of GL_ARB_robustness and WGL_ARB_create_context_robustness) is not supported in any form.

8. Claiming that appropriate version of OpenGL is supported is not a guarantee that it is true. I won't start a debate about it, but there is a plenty of examples.

9. Starting from OpenGL 4.0, the addition of new functionality does not follow new hardware capabilities. For example, 82% of OpenGL 4.3 functionality is supported by the old hardware (SM4). The same is true for OpenGL 4.1 and 4.2 (70+%). So, even if a driver claims it supports OpenGL 3.3, it actually could support more than 70% of all versions above (up to 4.3). The exception is only OpenGL 4.0, because it requires SM5 hardware exclusively.

Sorry for repeating your words, Brother Bob and Mhagain, but I tried to summarize all you sad. I hope it is clearer now. :)

Share this post


Link to post
Share on other sites
Regarding your number 6, the example of GL_ARB_shader_objects, which was quite different in some key areas to the core 2.0 implementation of GLSL, should be sufficient warning that ARB and core are not necessarily always identical. Having said that, I don't think we'll be seeing that happen again.

Share this post


Link to post
Share on other sites
[quote name='Aks9' timestamp='1348993763' post='4985290']
Everything said by Brother Bob and Mhagain is correst, but maybe it sounds a little bit complicated (although it is not).
Let me try to make it clear...

1. Not anyone, but only hardware vendors can make extensions. It is logical since extensions are part of the drivers, and only driver writers know what their hardware supports.
[/quote]
There are some non-hardware vendor-written extensions in the registry already which indicates that anyone can, in fact, write extensions. It doesn't take be a hardware manufacturer to suggest something. A lot of useful support functions can be suggested that no hardware manufacturer have thought of yet. For example, GL_MESA_window_pos was first suggested by Mesa, and was then fairly quickly adopted by the bigger vendors and promoted to an ARB extension, and then finally promoted into the core API.

The authors of gDEBugger also has an extension in the registry.

[quote name='Aks9' timestamp='1348993763' post='4985290']
2. If only one vendor supports some functionality, then appropriate prefix/suffix is used (NV, AMD,...) Sorry, Brother Bob, for repeating this.

3. If at least two vendors support some functionality, then EXT prefix/suffix is used (prefix for constants, suffix for functions).

4. If at least two vendors support some functionality, and the committee (ARB) decides it is something that should be a part of the core, the prefix/suffix changes to ARB.
[/quote]
The numbers are not necessarily that clear and well defined. There are extensions with vendor-tags that are supported by multiple vendors, and even extensions that have not been further promoted at all so there's no EXT or ARB equivalent. And funnily enough, I did find some ARB extensions with only one supported hardware vendor. Although, that database did look a bit incomplete or outdated so I would take that information with a grain of salt. In any case, there are no definite rules like that.

[quote name='Aks9' timestamp='1348993763' post='4985290']
8. Claiming that appropriate version of OpenGL is supported is not a guarantee that it is true. I won't start a debate about it, but there is a plenty of examples.
[/quote]
In practice I agree that the support may not be what it's supposed to be, but it is a violation with the licensing of the OpenGL brand and any claim the vendor makes about supporting a version. I would call that a driver bug rather than an issue with relying on the version information. It is a problem with the driver that we software developers end up having to deal with.

Share this post


Link to post
Share on other sites
[quote name='Brother Bob' timestamp='1349018579' post='4985370']
In practice I agree that the support may not be what it's supposed to be, but it is a violation with the licensing of the OpenGL brand and any claim the vendor makes about supporting a version. I would call that a driver bug rather than an issue with relying on the version information. It is a problem with the driver that we software developers end up having to deal with.
[/quote]

Worth noting that in some cases there is leeway in the spec for an implementation to report an extension but not actually support it. I'm primarily thinking of GL_ARB_occlusion_query here, where implementations are allowed to report 0 query counter bits. That's why it's important to read documentation, be aware of these cases, and run the appropriate glGet calls [u]before[/u] assuming that something is available.

Also worth noting that the GL spec itself makes no guarantee that a particular piece of functionality will actually be hardware accelerated. It has happened in the past that [url="http://developer.apple.com/library/mac/#qa/qa1536/_index.html"]vendors have provided a software implementation of some features[/url] [url="https://bugzilla.redhat.com/show_bug.cgi?format=multiple&id=813648"]in order to claim a higher GL_VERSION than what they actually did support in hardware[/url], and that attempting to use it could drop your entire pipeline down to software emulation. Fortunately this doesn't happen so much any more, but there are still trouble spots around accumulation buffers and drawing to the front buffer where some lower-end implementations (*cough*Intel*cough*) can give you problems.

A general rule I use is this: if it's not available in D3D then trying to use it in GL can be an unwise move on certain implementations, even if the GL spec indicates that it should be available.

Share this post


Link to post
Share on other sites
[quote name='mhagain' timestamp='1349009118' post='4985339']
Regarding your number 6, the example of GL_ARB_shader_objects, which was quite different in some key areas to the core 2.0 implementation of GLSL, should be sufficient warning that ARB and core are not necessarily always identical. Having said that, I don't think we'll be seeing that happen again.
[/quote]
Thanks for the example! I know it is not always the case, but an exception only confirms the rule. ;)

[quote name='Brother Bob' timestamp='1349018579' post='4985370']
There are some non-hardware vendor-written extensions in the registry already which indicates that anyone can, in fact, write extensions.[/quote]
I agree that extensions can be proposed from "the outer world", but GL functionality is implemented in drivers, so actual development is done on the hardware vendors' side. OK, I as to restrictive. My mistake.

[quote name='Brother Bob' timestamp='1349018579' post='4985370']In practice I agree that the support may not be what it's supposed to be, but it is a violation with the licensing of the OpenGL brand and any claim the vendor makes about supporting a version. I would call that a driver bug rather than an issue with relying on the version information. It is a problem with the driver that we software developers end up having to deal with.[/quote]
As mhagain already said, what's the purpose of GL_ARB_occlusion_query if it actually doesn't function. Another case (Intel again) is problem with multisampling. Intel does not support multisampling in pre-HD2000 GPUs, although it claims GL 2.1 is supported. Well, my humble opinion is that it is brainless to advertise GL 1.2 (because of missing functionality) when there is a full shader support. Extension strings should list all supported functionality regardless of the advertised GL version.

Share this post


Link to post
Share on other sites
I have to apologize because my statement number 6 is not correct.

[quote name='Aks9' timestamp='1348993763' post='4985290']
6. If the driver supports particular ARB extension it also supports core equivalent and vice versa. ... Well, if the core version exists, both ARB and core functions point to the same entry.
[/quote]

I carried out some experiments, and they proved that core, ARB and EXT versions of the same function may point to different entries.

Share this post


Link to post
Share on other sites
[quote name='Aks9' timestamp='1349211288' post='4986195']
I carried out some experiments, and they proved that core, ARB and EXT versions of the same function may point to different entries.
[/quote]
There may be cases where these are just stubs that call the real function internally in the driver, and that is common to all. The real determining factor would be whether the spec wording is the same or not.

Even more confusingly however, there are also cases where core, ARB and EXT GLenums are identical, and if these are taken as params to a core function, then the core function should be expected to behave the same (how could it possibly not?) for all. This is old OpenGL, but I'm thinking glTexEnv with the combine extensions here.

Share this post


Link to post
Share on other sites
Sign in to follow this  

  • Advertisement
  • Advertisement
  • Popular Now

  • Advertisement
  • Similar Content

    • By reenigne
      For those that don't know me. I am the individual who's two videos are listed here under setup for https://wiki.libsdl.org/Tutorials
      I also run grhmedia.com where I host the projects and code for the tutorials I have online.
      Recently, I received a notice from youtube they will be implementing their new policy in protecting video content as of which I won't be monetized till I meat there required number of viewers and views each month.

      Frankly, I'm pretty sick of youtube. I put up a video and someone else learns from it and puts up another video and because of the way youtube does their placement they end up with more views.
      Even guys that clearly post false information such as one individual who said GLEW 2.0 was broken because he didn't know how to compile it. He in short didn't know how to modify the script he used because he didn't understand make files and how the requirements of the compiler and library changes needed some different flags.

      At the end of the month when they implement this I will take down the content and host on my own server purely and it will be a paid system and or patreon. 

      I get my videos may be a bit dry, I generally figure people are there to learn how to do something and I rather not waste their time. 
      I used to also help people for free even those coming from the other videos. That won't be the case any more. I used to just take anyone emails and work with them my email is posted on the site.

      I don't expect to get the required number of subscribers in that time or increased views. Even if I did well it wouldn't take care of each reoccurring month.
      I figure this is simpler and I don't plan on putting some sort of exorbitant fee for a monthly subscription or the like.
      I was thinking on the lines of a few dollars 1,2, and 3 and the larger subscription gets you assistance with the content in the tutorials if needed that month.
      Maybe another fee if it is related but not directly in the content. 
      The fees would serve to cut down on the number of people who ask for help and maybe encourage some of the people to actually pay attention to what is said rather than do their own thing. That actually turns out to be 90% of the issues. I spent 6 hours helping one individual last week I must have asked him 20 times did you do exactly like I said in the video even pointed directly to the section. When he finally sent me a copy of the what he entered I knew then and there he had not. I circled it and I pointed out that wasn't what I said to do in the video. I didn't tell him what was wrong and how I knew that way he would go back and actually follow what it said to do. He then reported it worked. Yea, no kidding following directions works. But hey isn't alone and well its part of the learning process.

      So the point of this isn't to be a gripe session. I'm just looking for a bit of feed back. Do you think the fees are unreasonable?
      Should I keep the youtube channel and do just the fees with patreon or do you think locking the content to my site and require a subscription is an idea.

      I'm just looking at the fact it is unrealistic to think youtube/google will actually get stuff right or that youtube viewers will actually bother to start looking for more accurate videos. 
    • By Balma Alparisi
      i got error 1282 in my code.
      sf::ContextSettings settings; settings.majorVersion = 4; settings.minorVersion = 5; settings.attributeFlags = settings.Core; sf::Window window; window.create(sf::VideoMode(1600, 900), "Texture Unit Rectangle", sf::Style::Close, settings); window.setActive(true); window.setVerticalSyncEnabled(true); glewInit(); GLuint shaderProgram = createShaderProgram("FX/Rectangle.vss", "FX/Rectangle.fss"); float vertex[] = { -0.5f,0.5f,0.0f, 0.0f,0.0f, -0.5f,-0.5f,0.0f, 0.0f,1.0f, 0.5f,0.5f,0.0f, 1.0f,0.0f, 0.5,-0.5f,0.0f, 1.0f,1.0f, }; GLuint indices[] = { 0,1,2, 1,2,3, }; GLuint vao; glGenVertexArrays(1, &vao); glBindVertexArray(vao); GLuint vbo; glGenBuffers(1, &vbo); glBindBuffer(GL_ARRAY_BUFFER, vbo); glBufferData(GL_ARRAY_BUFFER, sizeof(vertex), vertex, GL_STATIC_DRAW); GLuint ebo; glGenBuffers(1, &ebo); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ebo); glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices,GL_STATIC_DRAW); glVertexAttribPointer(0, 3, GL_FLOAT, false, sizeof(float) * 5, (void*)0); glEnableVertexAttribArray(0); glVertexAttribPointer(1, 2, GL_FLOAT, false, sizeof(float) * 5, (void*)(sizeof(float) * 3)); glEnableVertexAttribArray(1); GLuint texture[2]; glGenTextures(2, texture); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, texture[0]); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); sf::Image* imageOne = new sf::Image; bool isImageOneLoaded = imageOne->loadFromFile("Texture/container.jpg"); if (isImageOneLoaded) { glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, imageOne->getSize().x, imageOne->getSize().y, 0, GL_RGBA, GL_UNSIGNED_BYTE, imageOne->getPixelsPtr()); glGenerateMipmap(GL_TEXTURE_2D); } delete imageOne; glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, texture[1]); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); sf::Image* imageTwo = new sf::Image; bool isImageTwoLoaded = imageTwo->loadFromFile("Texture/awesomeface.png"); if (isImageTwoLoaded) { glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, imageTwo->getSize().x, imageTwo->getSize().y, 0, GL_RGBA, GL_UNSIGNED_BYTE, imageTwo->getPixelsPtr()); glGenerateMipmap(GL_TEXTURE_2D); } delete imageTwo; glUniform1i(glGetUniformLocation(shaderProgram, "inTextureOne"), 0); glUniform1i(glGetUniformLocation(shaderProgram, "inTextureTwo"), 1); GLenum error = glGetError(); std::cout << error << std::endl; sf::Event event; bool isRunning = true; while (isRunning) { while (window.pollEvent(event)) { if (event.type == event.Closed) { isRunning = false; } } glClear(GL_COLOR_BUFFER_BIT); if (isImageOneLoaded && isImageTwoLoaded) { glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, texture[0]); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, texture[1]); glUseProgram(shaderProgram); } glBindVertexArray(vao); glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, nullptr); glBindVertexArray(0); window.display(); } glDeleteVertexArrays(1, &vao); glDeleteBuffers(1, &vbo); glDeleteBuffers(1, &ebo); glDeleteProgram(shaderProgram); glDeleteTextures(2,texture); return 0; } and this is the vertex shader
      #version 450 core layout(location=0) in vec3 inPos; layout(location=1) in vec2 inTexCoord; out vec2 TexCoord; void main() { gl_Position=vec4(inPos,1.0); TexCoord=inTexCoord; } and the fragment shader
      #version 450 core in vec2 TexCoord; uniform sampler2D inTextureOne; uniform sampler2D inTextureTwo; out vec4 FragmentColor; void main() { FragmentColor=mix(texture(inTextureOne,TexCoord),texture(inTextureTwo,TexCoord),0.2); } I was expecting awesomeface.png on top of container.jpg

    • By khawk
      We've just released all of the source code for the NeHe OpenGL lessons on our Github page at https://github.com/gamedev-net/nehe-opengl. code - 43 total platforms, configurations, and languages are included.
      Now operated by GameDev.net, NeHe is located at http://nehe.gamedev.net where it has been a valuable resource for developers wanting to learn OpenGL and graphics programming.

      View full story
    • By TheChubu
      The Khronos™ Group, an open consortium of leading hardware and software companies, announces from the SIGGRAPH 2017 Conference the immediate public availability of the OpenGL® 4.6 specification. OpenGL 4.6 integrates the functionality of numerous ARB and EXT extensions created by Khronos members AMD, Intel, and NVIDIA into core, including the capability to ingest SPIR-V™ shaders.
      SPIR-V is a Khronos-defined standard intermediate language for parallel compute and graphics, which enables content creators to simplify their shader authoring and management pipelines while providing significant source shading language flexibility. OpenGL 4.6 adds support for ingesting SPIR-V shaders to the core specification, guaranteeing that SPIR-V shaders will be widely supported by OpenGL implementations.
      OpenGL 4.6 adds the functionality of these ARB extensions to OpenGL’s core specification:
      GL_ARB_gl_spirv and GL_ARB_spirv_extensions to standardize SPIR-V support for OpenGL GL_ARB_indirect_parameters and GL_ARB_shader_draw_parameters for reducing the CPU overhead associated with rendering batches of geometry GL_ARB_pipeline_statistics_query and GL_ARB_transform_feedback_overflow_querystandardize OpenGL support for features available in Direct3D GL_ARB_texture_filter_anisotropic (based on GL_EXT_texture_filter_anisotropic) brings previously IP encumbered functionality into OpenGL to improve the visual quality of textured scenes GL_ARB_polygon_offset_clamp (based on GL_EXT_polygon_offset_clamp) suppresses a common visual artifact known as a “light leak” associated with rendering shadows GL_ARB_shader_atomic_counter_ops and GL_ARB_shader_group_vote add shader intrinsics supported by all desktop vendors to improve functionality and performance GL_KHR_no_error reduces driver overhead by allowing the application to indicate that it expects error-free operation so errors need not be generated In addition to the above features being added to OpenGL 4.6, the following are being released as extensions:
      GL_KHR_parallel_shader_compile allows applications to launch multiple shader compile threads to improve shader compile throughput WGL_ARB_create_context_no_error and GXL_ARB_create_context_no_error allow no error contexts to be created with WGL or GLX that support the GL_KHR_no_error extension “I’m proud to announce OpenGL 4.6 as the most feature-rich version of OpenGL yet. We've brought together the most popular, widely-supported extensions into a new core specification to give OpenGL developers and end users an improved baseline feature set. This includes resolving previous intellectual property roadblocks to bringing anisotropic texture filtering and polygon offset clamping into the core specification to enable widespread implementation and usage,” said Piers Daniell, chair of the OpenGL Working Group at Khronos. “The OpenGL working group will continue to respond to market needs and work with GPU vendors to ensure OpenGL remains a viable and evolving graphics API for all its customers and users across many vital industries.“
      The OpenGL 4.6 specification can be found at https://khronos.org/registry/OpenGL/index_gl.php. The GLSL to SPIR-V compiler glslang has been updated with GLSL 4.60 support, and can be found at https://github.com/KhronosGroup/glslang.
      Sophisticated graphics applications will also benefit from a set of newly released extensions for both OpenGL and OpenGL ES to enable interoperability with Vulkan and Direct3D. These extensions are named:
      GL_EXT_memory_object GL_EXT_memory_object_fd GL_EXT_memory_object_win32 GL_EXT_semaphore GL_EXT_semaphore_fd GL_EXT_semaphore_win32 GL_EXT_win32_keyed_mutex They can be found at: https://khronos.org/registry/OpenGL/index_gl.php
      Industry Support for OpenGL 4.6
      “With OpenGL 4.6 our customers have an improved set of core features available on our full range of OpenGL 4.x capable GPUs. These features provide improved rendering quality, performance and functionality. As the graphics industry’s most popular API, we fully support OpenGL and will continue to work closely with the Khronos Group on the development of new OpenGL specifications and extensions for our customers. NVIDIA has released beta OpenGL 4.6 drivers today at https://developer.nvidia.com/opengl-driver so developers can use these new features right away,” said Bob Pette, vice president, Professional Graphics at NVIDIA.
      "OpenGL 4.6 will be the first OpenGL release where conformant open source implementations based on the Mesa project will be deliverable in a reasonable timeframe after release. The open sourcing of the OpenGL conformance test suite and ongoing work between Khronos and X.org will also allow for non-vendor led open source implementations to achieve conformance in the near future," said David Airlie, senior principal engineer at Red Hat, and developer on Mesa/X.org projects.

      View full story
    • By _OskaR
      Hi,
      I have an OpenGL application but without possibility to wite own shaders.
      I need to perform small VS modification - is possible to do it in an alternative way? Do we have apps or driver modifictions which will catch the shader sent to GPU and override it?
  • Advertisement