Sign in to follow this  
LevyDee

DX11 Updating engine from dx9 to dx11

Recommended Posts

I have been building a home grown engine for a few years now just as a hobby using dx9, so not working on it full time. So my question is, eventually I will need to update to directx11, and was just curious if someone with experience could enlighten me how difficult this could be. Really just changing how you use the d3ddevice right? I am already using a programmable pipeline, so that wont be an issue, but are there any other big challenges involved? Thanks.

Share this post


Link to post
Share on other sites
Make sure all your effect files designate row_major - Matrices (float4x4) are row major by default in DX9, and column major (matrix) in DX10 and DX11.

More generally speaking, my own game engine seems to be working fine just wrapping DX9, D10 and DX11 in genericized classes. Ideally, only the smallest possible part of the foundation of your engine should even know it's using DirectX, or which version.

If you've built it along good "separation of concerns" lines, you should be able to swap out that small subset. You could even put it in a DLL - DX9API.dll, DX10API.dll, DX11API.dll. Then, when/if you get your hands on DX12, or OpenGL, or whatever, you can swap in a DX12API.dll, OpenGLAPI.dll (not familiar with OpenGL version numbers) or, I dunno, AsYetUninventedConsoleAPI.dll.

In short, there's no reason even so much as your Mesh class/struct should have a clue what you're using - Leave that to your VertexBuffer and IndexBuffer classes.

Share this post


Link to post
Share on other sites
Two of the biggest differences to me are -
* DX9 vertex declarations are forgiving in that they can be slightly incorrect and still work. DX11 input layouts on the other hand need to exactly match your vertex shader input structure. This means that if the same mesh is drawn using 2 shaders, you may need 2 input layouts.
* DX11 render states are immutable objects. E.g. You can't just set "depth test = less" at any time, instead you've got to create a complete depth-stencil-state object ahead of time. If porting a DX9 engine, you might need to create a bunch of large tables/maps of state objects in advance.
[quote name='Narf the Mouse' timestamp='1348979191' post='4985261']Make sure all your effect files designate row_major - Matrices (float4x4) are row major by default in DX9, and column major (matrix) in DX10 and DX11.[/quote]I don't know about D3DX math, but the HLSL compiler hasn't changed in that column_major is the default float4x4 layout in DX9 too.

Share this post


Link to post
Share on other sites
A third major difference I'd highlight is use of constant buffers instead of free-standing constants in HLSL code. Depending how you've currently got things set up that may result in a good deal of re-thinking, re-organizing and re-writing.

There are also many smaller, more subtle differences throughout the two versions, such as the differences between Lock and Map, and these can sometimes trip you up.

Around the release of D3D10 the major GPU vendors published sets of slides outlining advice and trouble-spots to look out for, and these are still quite relevant to D3D11 and worth reading. Here's a good overview: http://developer.download.nvidia.com/presentations/2008/GDC/GDC08-D3DDay-Performance.pdf

Share this post


Link to post
Share on other sites
The initial port probably won't be too hard for you. It's not too hard to spend a week or two and get a DX9 renderer working on DX11. What's harder is actually making it run fast (or faster), and integrating the new functionality that DX11 offers you. Constant buffers are usually the biggest performance problem for a quick and dirty port, since using them to emulate DX9 constant registers can actually be slower than doing the same thing in DX9. Past that you may need a lot of re-writing for things like handling structured buffers instead of just textures everywhere, having texturs/buffers bound to all shader stages, changing shaders to use integer ops or more robust branching/indexing, and so on. Edited by MJP

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

Sign in to follow this  

  • Announcements

  • Forum Statistics

    • Total Topics
      628383
    • Total Posts
      2982371
  • Similar Content

    • By joeblack
      Hi,
      im reading about specular aliasing because of mip maps, as far as i understood it, you need to compute fetched normal lenght and detect now its changed from unit length. I’m currently using BC5 normal maps, so i reconstruct z in shader and therefore my normals are normalized. Can i still somehow use antialiasing or its not needed? Thanks.
    • By 51mon
      I want to change the sampling behaviour to SampleLevel(coord, ddx(coord.y).xx, ddy(coord.y).xx). I was just wondering if it's possible without explicit shader code, e.g. with some flags or so?
    • By GalacticCrew
      Hello,
      I want to improve the performance of my game (engine) and some of your helped me to make a GPU Profiler. After creating the GPU Profiler, I started to measure the time my GPU needs per frame. I refined my GPU time measurements to find my bottleneck.
      Searching the bottleneck
      Rendering a small scene in an Idle state takes around 15.38 ms per frame. 13.54 ms (88.04%) are spent while rendering the scene, 1.57 ms (10.22%) are spent during the SwapChain.Present call (no VSync!) and the rest is spent on other tasks like rendering the UI. I further investigated the scene rendering, since it takes über 88% of my GPU frame rendering time.
      When rendering my scene, most of the time (80.97%) is spent rendering my models. The rest is spent to render the background/skybox, updating animation data, updating pixel shader constant buffer, etc. It wasn't really suprising that most of the time is spent for my models, so I further refined my measurements to find the actual bottleneck.
      In my example scene, I have five animated NPCs. When rendering these NPCs, most actions are almost for free. Setting the proper shaders in the input layout (0.11%), updating vertex shader constant buffers (0.32%), setting textures (0.24%) and setting vertex and index buffers (0.28%). However, the rest of the GPU time (99.05% !!) is spent in two function calls: DrawIndexed and DrawIndexedInstance.
      I searched this forum and the web for other articles and threads about these functions, but I haven't found a lot of useful information. I use SharpDX and .NET Framework 4.5 to develop my game (engine). The developer of SharpDX said, that "The method DrawIndexed in SharpDX is a direct call to DirectX" (Source). DirectX 11 is widely used and SharpDX is "only" a wrapper for DirectX functions, I assume the problem is in my code.
      How I render my scene
      When rendering my scene, I render one model after another. Each model has one or more parts and one or more positions. For example, a human model has parts like head, hands, legs, torso, etc. and may be placed in different locations (on the couch, on a street, ...). For static elements like furniture, houses, etc. I use instancing, because the positions never change at run-time. Dynamic models like humans and monster don't use instancing, because positions change over time.
      When rendering a model, I use this work-flow:
      Set vertex and pixel shaders, if they need to be updated (e.g. PBR shaders, simple shader, depth info shaders, ...) Set animation data as constant buffer in the vertex shader, if the model is animated Set generic vertex shader constant buffer (world matrix, etc.) Render all parts of the model. For each part: Set diffuse, normal, specular and emissive texture shader views Set vertex buffer Set index buffer Call DrawIndexedInstanced for instanced models and DrawIndexed models What's the problem
      After my GPU profiling, I know that over 99% of the rendering time for a single model is spent in the DrawIndexedInstanced and DrawIndexed function calls. But why do they take so long? Do I have to try to optimize my vertex or pixel shaders? I do not use other types of shaders at the moment. "Le Comte du Merde-fou" suggested in this post to merge regions of vertices to larger vertex buffers to reduce the number of Draw calls. While this makes sense to me, it does not explain why rendering my five (!) animated models takes that much GPU time. To make sure I don't analyse something I wrong, I made sure to not use the D3D11_CREATE_DEVICE_DEBUG flag and to run as Release version in Visual Studio as suggested by Hodgman in this forum thread.
      My engine does its job. Multi-texturing, animation, soft shadowing, instancing, etc. are all implemented, but I need to reduce the GPU load for performance reasons. Each frame takes less than 3ms CPU time by the way. So the problem is on the GPU side, I believe.
    • By noodleBowl
      I was wondering if someone could explain this to me
      I'm working on using the windows WIC apis to load in textures for DirectX 11. I see that sometimes the WIC Pixel Formats do not directly match a DXGI Format that is used in DirectX. I see that in cases like this the original WIC Pixel Format is converted into a WIC Pixel Format that does directly match a DXGI Format. And doing this conversion is easy, but I do not understand the reason behind 2 of the WIC Pixel Formats that are converted based on Microsoft's guide
      I was wondering if someone could tell me why Microsoft's guide on this topic says that GUID_WICPixelFormat40bppCMYKAlpha should be converted into GUID_WICPixelFormat64bppRGBA and why GUID_WICPixelFormat80bppCMYKAlpha should be converted into GUID_WICPixelFormat64bppRGBA
      In one case I would think that: 
      GUID_WICPixelFormat40bppCMYKAlpha would convert to GUID_WICPixelFormat32bppRGBA and that GUID_WICPixelFormat80bppCMYKAlpha would convert to GUID_WICPixelFormat64bppRGBA, because the black channel (k) values would get readded / "swallowed" into into the CMY channels
      In the second case I would think that:
      GUID_WICPixelFormat40bppCMYKAlpha would convert to GUID_WICPixelFormat64bppRGBA and that GUID_WICPixelFormat80bppCMYKAlpha would convert to GUID_WICPixelFormat128bppRGBA, because the black channel (k) bits would get redistributed amongst the remaining 4 channels (CYMA) and those "new bits" added to those channels would fit in the GUID_WICPixelFormat64bppRGBA and GUID_WICPixelFormat128bppRGBA formats. But also seeing as there is no GUID_WICPixelFormat128bppRGBA format this case is kind of null and void
      I basically do not understand why Microsoft says GUID_WICPixelFormat40bppCMYKAlpha and GUID_WICPixelFormat80bppCMYKAlpha should convert to GUID_WICPixelFormat64bppRGBA in the end
       
    • By DejayHextrix
      Hi, New here. 
      I need some help. My fiance and I like to play this mobile game online that goes by real time. Her and I are always working but when we have free time we like to play this game. We don't always got time throughout the day to Queue Buildings, troops, Upgrades....etc.... 
      I was told to look into DLL Injection and OpenGL/DirectX Hooking. Is this true? Is this what I need to learn? 
      How do I read the Android files, or modify the files, or get the in-game tags/variables for the game I want? 
      Any assistance on this would be most appreciated. I been everywhere and seems no one knows or is to lazy to help me out. It would be nice to have assistance for once. I don't know what I need to learn. 
      So links of topics I need to learn within the comment section would be SOOOOO.....Helpful. Anything to just get me started. 
      Thanks, 
      Dejay Hextrix 
  • Popular Now