• Announcements

    • khawk

      Download the Game Design and Indie Game Marketing Freebook   07/19/17

      GameDev.net and CRC Press have teamed up to bring a free ebook of content curated from top titles published by CRC Press. The freebook, Practices of Game Design & Indie Game Marketing, includes chapters from The Art of Game Design: A Book of Lenses, A Practical Guide to Indie Game Marketing, and An Architectural Approach to Level Design. The GameDev.net FreeBook is relevant to game designers, developers, and those interested in learning more about the challenges in game development. We know game development can be a tough discipline and business, so we picked several chapters from CRC Press titles that we thought would be of interest to you, the GameDev.net audience, in your journey to design, develop, and market your next game. The free ebook is available through CRC Press by clicking here. The Curated Books The Art of Game Design: A Book of Lenses, Second Edition, by Jesse Schell Presents 100+ sets of questions, or different lenses, for viewing a game’s design, encompassing diverse fields such as psychology, architecture, music, film, software engineering, theme park design, mathematics, anthropology, and more. Written by one of the world's top game designers, this book describes the deepest and most fundamental principles of game design, demonstrating how tactics used in board, card, and athletic games also work in video games. It provides practical instruction on creating world-class games that will be played again and again. View it here. A Practical Guide to Indie Game Marketing, by Joel Dreskin Marketing is an essential but too frequently overlooked or minimized component of the release plan for indie games. A Practical Guide to Indie Game Marketing provides you with the tools needed to build visibility and sell your indie games. With special focus on those developers with small budgets and limited staff and resources, this book is packed with tangible recommendations and techniques that you can put to use immediately. As a seasoned professional of the indie game arena, author Joel Dreskin gives you insight into practical, real-world experiences of marketing numerous successful games and also provides stories of the failures. View it here. An Architectural Approach to Level Design This is one of the first books to integrate architectural and spatial design theory with the field of level design. The book presents architectural techniques and theories for level designers to use in their own work. It connects architecture and level design in different ways that address the practical elements of how designers construct space and the experiential elements of how and why humans interact with this space. Throughout the text, readers learn skills for spatial layout, evoking emotion through gamespaces, and creating better levels through architectural theory. View it here. Learn more and download the ebook by clicking here. Did you know? GameDev.net and CRC Press also recently teamed up to bring GDNet+ Members up to a 20% discount on all CRC Press books. Learn more about this and other benefits here.

Archived

This topic is now archived and is closed to further replies.

Zaei

Spherical Coordinates

3 posts in this topic

I am trying to define a planet using spherical corrdinates (rho, phi, theta). The sphere is centered on the origin, and I have my camera defined by a second set of spherical coordinates. What I want to do is clip away all geometry on the sphere that is not visible (the sphere has a radius of ~5000, the camera is at rho 5020). How can i avoid the cost of converting from Spherical to cartesian coordinates, and clip off all that extra geometry? Z.
0

Share this post


Link to post
Share on other sites
I will assume that your camera is located on the positive z axis at a point zc, such that zc > zp (where zc is the radius of the sphere the camera lies on and zp is the radius of the planet). If you're camera lies elsewhere on the sphere, then it is a trivial transformation of coordinates to adjust the solution to your exact problem.

Given that zc > zp, then the visible part of the planet will be the locus of all points within the 'cap' of the sphere defined by the intersection of the sphere and a tangent cone with origin at zc. In other words, all vectors that pass through zc and are tangent to the sphere define a 'tangent cone' and it is only points on the planet within this cone that will be visible at zc. I believe that finding this set of points is the problem you have asked. Please correct me if I am wrong.

Assuming this is the case...

A vector from the origin of the sphere to zc is given by c = <0,0,zc> and the vector function defining the surface of the sphere is given by r (theta,phi) = zp(cos(theta)sin(phi)i + sin(theta)sin(phi)j + cos(phi)k ). Hence, the tangent cone is defined by t = c -r such that t.r = 0; and so we can solve this to find that cos(phi)=zp/zc, thus defining the boundary of our set of points by the angle phi (which is the (angle of) declination from the z axis of the point on the sphere).

So, you can clip all points on the sphere for which phi>cos-1(zp/zc)

I hope this is what you were looking for!

Cheers,

Timkin

Edited by - Timkin on October 15, 2001 12:18:02 AM
0

Share this post


Link to post
Share on other sites