• Announcements

    • khawk

      Download the Game Design and Indie Game Marketing Freebook   07/19/17

      GameDev.net and CRC Press have teamed up to bring a free ebook of content curated from top titles published by CRC Press. The freebook, Practices of Game Design & Indie Game Marketing, includes chapters from The Art of Game Design: A Book of Lenses, A Practical Guide to Indie Game Marketing, and An Architectural Approach to Level Design. The GameDev.net FreeBook is relevant to game designers, developers, and those interested in learning more about the challenges in game development. We know game development can be a tough discipline and business, so we picked several chapters from CRC Press titles that we thought would be of interest to you, the GameDev.net audience, in your journey to design, develop, and market your next game. The free ebook is available through CRC Press by clicking here. The Curated Books The Art of Game Design: A Book of Lenses, Second Edition, by Jesse Schell Presents 100+ sets of questions, or different lenses, for viewing a game’s design, encompassing diverse fields such as psychology, architecture, music, film, software engineering, theme park design, mathematics, anthropology, and more. Written by one of the world's top game designers, this book describes the deepest and most fundamental principles of game design, demonstrating how tactics used in board, card, and athletic games also work in video games. It provides practical instruction on creating world-class games that will be played again and again. View it here. A Practical Guide to Indie Game Marketing, by Joel Dreskin Marketing is an essential but too frequently overlooked or minimized component of the release plan for indie games. A Practical Guide to Indie Game Marketing provides you with the tools needed to build visibility and sell your indie games. With special focus on those developers with small budgets and limited staff and resources, this book is packed with tangible recommendations and techniques that you can put to use immediately. As a seasoned professional of the indie game arena, author Joel Dreskin gives you insight into practical, real-world experiences of marketing numerous successful games and also provides stories of the failures. View it here. An Architectural Approach to Level Design This is one of the first books to integrate architectural and spatial design theory with the field of level design. The book presents architectural techniques and theories for level designers to use in their own work. It connects architecture and level design in different ways that address the practical elements of how designers construct space and the experiential elements of how and why humans interact with this space. Throughout the text, readers learn skills for spatial layout, evoking emotion through gamespaces, and creating better levels through architectural theory. View it here. Learn more and download the ebook by clicking here. Did you know? GameDev.net and CRC Press also recently teamed up to bring GDNet+ Members up to a 20% discount on all CRC Press books. Learn more about this and other benefits here.
Sign in to follow this  
Followers 0
Relfos

Group circle collision

2 posts in this topic

I'm trying to implement RTS style units movement, where you can click on a point, and all units move into there in a group.
Right I have it almost functional, the units move in a group, and don't intersect each other.
However it seems that the correct method is not stable enough, units will constantly move and bounce around even after reaching the targeting point.

My current algoritm is the following:
1 - Calculate direction vector to target
2 - For each unit find the nearest unit
3 - if they intersect, move this unit a very small bit in the opposite direction


I tried doing the collision test with all other units instead of only the nearest, but the result is similar (all units pushing each other around endlessy). What am I missing?
I guess this problem is somehow similar to a very simple 2D engine, so the solution is probably related to that, but my maths is quite weak
0

Share this post


Link to post
Share on other sites
The usual Google terms here are going to be things like "flocking," and "potential functions."

There's a ton written on this topic, and there are many variations. Here's a nice, simple approach:

0.) You have a bunch of units -- aka "agents" -- and each has a position vector in 2d. If you have n agents, call their positions x1, x2, ..., xn.

1.) Define an "interagent potential function." This is a scalar-valued function of two agents' positions that's big when the agents are close and small when far away. You typically pick something that looks vaguely bell-curve-ish. Call it [i]w[/i]. I'll give an example later.

2.) You add up these potentials for all pairs of agents, to define a new function
V(x1, x2, ..., xn) = sum_over_all_ij w(xi, xj)
It's something a lot like "potential energy."

3.) You compute a partial derivative dV/dxi, for each i. This is something a lot like "force."

4.) At each step, you push each agent a little bit against the derivative, i.e.
xi[t+1] = xi[t] - eps*dV/dxi(x1,...,xn)
where 'eps' is a small number.

If you pick a smooth enough [i]w[/i], then for sufficiently small "eps," this will converge (if you want to be really fancy, you check to make sure that V has gone down since the last iteration, and, if not, halve "eps" and try again (and so on)).

What you're doing is a lot like a "physics simulation" of "charged particles." The differences are that (1) you're working directly with velocities, not accelerations, and (2) you're not necessarily using 1/r^2 force fields (which give all kinds of nasty divide-by-zero--type problems when agents get too close to each other).

The potential function that I personally like to use I've heard called the "poly6 kernel." As a function of the squared radius between two particles, it is,

w(r^2) = ( r^2 - 1 )^2 if r < 1 and 0 if r >= 1.

I like it because it looks a lot like a Gaussian, because it is exactly zero outside r=1 (so you only need to look at neighbors within that radius), and because you only need r^2 and not r, so you can avoid a square root. But this is just one choice of function; the real key is not what potential you pick, but simply [i]that[/i] you define your algorithm in terms of a potential. If you do, you get, "for free," good stability properties. Edited by Emergent
2

Share this post


Link to post
Share on other sites
Thanks for the reply, very informative but the math is still a bit advanced to me, I'm trying to digest it
0

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!


Register a new account

Sign in

Already have an account? Sign in here.


Sign In Now
Sign in to follow this  
Followers 0