• Announcements

    • khawk

      Download the Game Design and Indie Game Marketing Freebook   07/19/17

      GameDev.net and CRC Press have teamed up to bring a free ebook of content curated from top titles published by CRC Press. The freebook, Practices of Game Design & Indie Game Marketing, includes chapters from The Art of Game Design: A Book of Lenses, A Practical Guide to Indie Game Marketing, and An Architectural Approach to Level Design. The GameDev.net FreeBook is relevant to game designers, developers, and those interested in learning more about the challenges in game development. We know game development can be a tough discipline and business, so we picked several chapters from CRC Press titles that we thought would be of interest to you, the GameDev.net audience, in your journey to design, develop, and market your next game. The free ebook is available through CRC Press by clicking here. The Curated Books The Art of Game Design: A Book of Lenses, Second Edition, by Jesse Schell Presents 100+ sets of questions, or different lenses, for viewing a game’s design, encompassing diverse fields such as psychology, architecture, music, film, software engineering, theme park design, mathematics, anthropology, and more. Written by one of the world's top game designers, this book describes the deepest and most fundamental principles of game design, demonstrating how tactics used in board, card, and athletic games also work in video games. It provides practical instruction on creating world-class games that will be played again and again. View it here. A Practical Guide to Indie Game Marketing, by Joel Dreskin Marketing is an essential but too frequently overlooked or minimized component of the release plan for indie games. A Practical Guide to Indie Game Marketing provides you with the tools needed to build visibility and sell your indie games. With special focus on those developers with small budgets and limited staff and resources, this book is packed with tangible recommendations and techniques that you can put to use immediately. As a seasoned professional of the indie game arena, author Joel Dreskin gives you insight into practical, real-world experiences of marketing numerous successful games and also provides stories of the failures. View it here. An Architectural Approach to Level Design This is one of the first books to integrate architectural and spatial design theory with the field of level design. The book presents architectural techniques and theories for level designers to use in their own work. It connects architecture and level design in different ways that address the practical elements of how designers construct space and the experiential elements of how and why humans interact with this space. Throughout the text, readers learn skills for spatial layout, evoking emotion through gamespaces, and creating better levels through architectural theory. View it here. Learn more and download the ebook by clicking here. Did you know? GameDev.net and CRC Press also recently teamed up to bring GDNet+ Members up to a 20% discount on all CRC Press books. Learn more about this and other benefits here.
Sign in to follow this  
Followers 0
Alessandro

"Preventing" collision detection

8 posts in this topic

Hello folks, I've created a basic collision detection routine following this document: http://www.lighthouse3d.com/tutorials/maths/ray-triangle-intersection/

I'd like to monitor the distance from the point P and the triangle being tested for intersection, so that I can stop the routine when the distance falls below a certain value.

I tried modifying the 0.00001 values in the code thinking that it was meant to be a tolerance value for such collision "distance", but it seems to be ineffective.

What do you think? There is a way to do it? Here below is the routine derived from the document above:

[code]
int rayIntersectsTriangle(vector3_t orig, vector3_t dir, vector3_t v0, vector3_t v1, vector3_t v2) {
float a,f,u,v,t;
vector3_t e1= v1-v0;
vector3_t e2= v2-v0;
vector3_t h=dir^e2;
a = e1*h;
if (a > -0.00001 && a < 0.00001) return(false);
f = 1.0/a;
vector3_t s=orig-v0;
u = f * (s*h);
if (u < 0.0 || u > 1.0) return(false);
vector3_t q=s^e1;
v = f * (dir*q);
if (v < 0.0 || u + v > 1.0) return(false);
// at this stage we can compute t to find out where the intersection point is on the line
t = f * (e2*q);
if (t > 0.00001) // ray intersection
return(true);
else // this means that there is a line intersection
// but not a ray intersection
return (false);
}
[/code]
0

Share this post


Link to post
Share on other sites
Can you try to describe more clearly what you mean by "I'd like to monitor the distance from the point P and the triangle being tested for intersection, so that I can stop the routine when the distance falls below a certain value."

FWIW, the line if (a > -0.00001 && a < 0.00001) return(false); is testing if the ray is parallel to the triangle face, if it is, then the function is deciding that there's no collision.

Is it possible that what you want is for your ray to have some thickness? If so, then you need to look at swept/moving sphere vs triangle intersections.
1

Share this post


Link to post
Share on other sites
Sorry for not being more precise. Take a look at the attached image. You see there is a point [size=5][b]p[/b][/size] the is being moved in direction [size=5][i][b]v[/b][/i][/size], and the collision point C. I'd like to "monitor" the distance between the point [size=5][b]p[/b][/size] and the collision point [b][size=5]C[/size][/b], so that I can stop the routine before it actually collides.
0

Share this post


Link to post
Share on other sites
In your function, t is the distance between point p and point c (assuming dir is normalised)

So, changing "if (t > 0.00001)" to "if (t > 1.0)" would make the function ignore collisions that occur within one unit of the origin of the ray.
1

Share this post


Link to post
Share on other sites
Sorry for not being more precise. Take a look at the attached image. You see there is a point [size=5][b]p[/b][/size] the is being moved in direction [size=5][i][b]v[/b][/i][/size], and the collision point [size=5][b]C[/b][/size].
I'd like to "monitor" the distance between the point [size=5][b]p[/b][/size] and the collision point [b][size=5]C[/size][/b], so that I can stop the routine before it actually collides.
0

Share this post


Link to post
Share on other sites
Also, I'd like to ask if there are faster algorithms that do ray triangle intersection, or this is just the way to go.
0

Share this post


Link to post
Share on other sites
To get the distance between two points(p and c) just treat them as vectors and you get: distance = ||c-p||

are you trying to prevent collision [b]detection[/b] like the post title says or are you trying to stop actors before a collision occurs ? Edited by SimonForsman
1

Share this post


Link to post
Share on other sites
[quote name='SimonForsman' timestamp='1353003308' post='5001297']
To get the distance between two points(p and c) just treat them as vectors and you get: distance = ||c-p||

are you trying to prevent collision [b]detection[/b] like the post title says or are you trying to stop actors before a collision occurs ?
[/quote]

Actually the 2nd option would be perhaps a better option for my needs.
0

Share this post


Link to post
Share on other sites
[quote name='C0lumbo' timestamp='1352970376' post='5001156']
In your function, t is the distance between point p and point c (assuming dir is normalised)

So, changing "if (t > 0.00001)" to "if (t > 1.0)" would make the function ignore collisions that occur within one unit of the origin of the ray.
[/quote]

Thank you very much, that was successful.
0

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!


Register a new account

Sign in

Already have an account? Sign in here.


Sign In Now
Sign in to follow this  
Followers 0