• Announcements

    • khawk

      Download the Game Design and Indie Game Marketing Freebook   07/19/17

      GameDev.net and CRC Press have teamed up to bring a free ebook of content curated from top titles published by CRC Press. The freebook, Practices of Game Design & Indie Game Marketing, includes chapters from The Art of Game Design: A Book of Lenses, A Practical Guide to Indie Game Marketing, and An Architectural Approach to Level Design. The GameDev.net FreeBook is relevant to game designers, developers, and those interested in learning more about the challenges in game development. We know game development can be a tough discipline and business, so we picked several chapters from CRC Press titles that we thought would be of interest to you, the GameDev.net audience, in your journey to design, develop, and market your next game. The free ebook is available through CRC Press by clicking here. The Curated Books The Art of Game Design: A Book of Lenses, Second Edition, by Jesse Schell Presents 100+ sets of questions, or different lenses, for viewing a game’s design, encompassing diverse fields such as psychology, architecture, music, film, software engineering, theme park design, mathematics, anthropology, and more. Written by one of the world's top game designers, this book describes the deepest and most fundamental principles of game design, demonstrating how tactics used in board, card, and athletic games also work in video games. It provides practical instruction on creating world-class games that will be played again and again. View it here. A Practical Guide to Indie Game Marketing, by Joel Dreskin Marketing is an essential but too frequently overlooked or minimized component of the release plan for indie games. A Practical Guide to Indie Game Marketing provides you with the tools needed to build visibility and sell your indie games. With special focus on those developers with small budgets and limited staff and resources, this book is packed with tangible recommendations and techniques that you can put to use immediately. As a seasoned professional of the indie game arena, author Joel Dreskin gives you insight into practical, real-world experiences of marketing numerous successful games and also provides stories of the failures. View it here. An Architectural Approach to Level Design This is one of the first books to integrate architectural and spatial design theory with the field of level design. The book presents architectural techniques and theories for level designers to use in their own work. It connects architecture and level design in different ways that address the practical elements of how designers construct space and the experiential elements of how and why humans interact with this space. Throughout the text, readers learn skills for spatial layout, evoking emotion through gamespaces, and creating better levels through architectural theory. View it here. Learn more and download the ebook by clicking here. Did you know? GameDev.net and CRC Press also recently teamed up to bring GDNet+ Members up to a 20% discount on all CRC Press books. Learn more about this and other benefits here.
Sign in to follow this  
Followers 0
opengl_beginner

How to represent a point using spherical harmonics?

13 posts in this topic

Hi guys! :)


I have a new interesting question for us today:
Given the direction to a point light source (e.g. [0 0 1]), how do we find the spherical harmonics representation of it?

Let's assume the degree of approximation is 2, i.e. there are 9 coefficients for each color channel.
Here's a link to an excellent tutorial on this topic: [url="http://www.cs.columbia.edu/~cs4162/slides/spherical-harmonic-lighting.pdf"]http://www.cs.columbia.edu/~cs4162/slides/spherical-harmonic-lighting.pdf[/url]
Unfortunately though, it does not answer my question.


Thanks and looking forward to your suggestions!
0

Share this post


Link to post
Share on other sites
Short answer: You can't really. Representing a point-light requires an infinite number of coefficients.

Long answer: You can approximate it using a circular shape. The paper "Algorithms for Spherical Harmonic-Lighting" By Ian G. Lisle and S.-L. Tracy Huang gives a method for calculating the coefficients for this directly.
0

Share this post


Link to post
Share on other sites
[quote name='ginkgo' timestamp='1353185215' post='5001840'] Short answer: You can't really. Representing a point-light requires an infinite number of coefficients. Long answer: You can approximate it using a circular shape. The paper "Algorithms for Spherical Harmonic-Lighting" By Ian G. Lisle and S.-L. Tracy Huang gives a method for calculating the coefficients for this directly.[/quote]

Hey ginkgo! Well, yes - but isn't that exactly the idea behind spherical harmonics - approximating a function using a polynomial of a finite degree (e.g. degree 2 already gives an error rate less than 1%).

I have found several methods for computing the coefficients, amongst others, the original project page for irradiance computation:
[url="http://graphics.stanford.edu/papers/envmap/"]Link[/url], which provides the function prefilter.c to compute coefficients.

But the input to this function is an environment map (an image), for which the lighting is computed.


[quote name='Hodgman' timestamp='1353195036' post='5001876'] You'd also have to know the distance to the light. [/quote]

Well, as I mentioned, let's take the direction vector [0 0 1], with an infinite point light source.


Further suggestions? Edited by opengl_beginner
0

Share this post


Link to post
Share on other sites
[quote name='ginkgo' timestamp='1353185215' post='5001840'] Short answer: You can't really. Representing a point-light requires an infinite number of coefficients. Long answer: You can approximate it using a circular shape. The paper "Algorithms for Spherical Harmonic-Lighting" By Ian G. Lisle and S.-L. Tracy Huang gives a method for calculating the coefficients for this directly.[/quote]


Hey ginkgo! Well, yes - but isn't that exactly the idea behind spherical harmonics - approximating a function using a polynomial of a finite degree (e.g. degree 2 already gives an error rate less than 1%).
I have found several methods for computing the coefficients, amongst others, the original project page for irradiance computation: [url="http://graphics.stanford.edu/papers/envmap/"]Link[/url], which provides the function prefilter.c to compute coefficients.
But the input to this function is an environment map (an image), for which the lighting is computed.

[quote name='Hodgman' timestamp='1353195036' post='5001876'] You'd also have to know the distance to the light. [/quote]

Well, as I mentioned, let's take the direction vector [0 0 1], with an infinite point light source.

Further suggestions? Edited by opengl_beginner
0

Share this post


Link to post
Share on other sites
[quote name='opengl_beginner' timestamp='1353232912' post='5001996']
Well, as I mentioned, let's take the direction vector [0 0 1], with an infinite point light source.
[/quote]Ah ok. The confusion was because an infinite/directional and a point/omni light are different things.
The details for directional lights are contained in the [url="http://www.ppsloan.org/publications/StupidSH36.pdf"]Stupid SH Tricks[/url] paper in the "Analytic Models" section. Edited by Hodgman
1

Share this post


Link to post
Share on other sites
[quote name='Hodgman' timestamp='1353239477' post='5002009']
[quote name='opengl_beginner' timestamp='1353232912' post='5001996']
Well, as I mentioned, let's take the direction vector [0 0 1], with an infinite point light source.
[/quote]Ah ok. The confusion was because an infinite/directional and a point/omni light are different things.
The details for directional lights are contained in the [url="http://www.ppsloan.org/publications/StupidSH36.pdf"]Stupid SH Tricks[/url] paper in the "Analytic Models" section.
[/quote]


Hey Hodgman!


Thanks a lot for the reference. I had seen the tutorial before, but never managed to notice the relevant chapter!


[quote]
Directional lights are trivial to compute, you simply evaluate the SH basis functions in the given direction and scale appropriately (see Normalization section.) Spherical Light sources can be efficiently evaluated using zonal harmonics. Below is a diagram showing an example scene, we want to compute the incident radiance, a spherical function, at the receiver point P. Given a spherical light source with
center C, radius r, what is the radiance arriving at a point P d units away? The sin of the half-angle subtended by the light source is r/d, so you just need to compute a light source that subtends an appropriate part of the sphere. The ZH coefficients can be computed in closed form as a function of this angle: ? = integral ( integral (y_l, \theta, 0, 2Pi ) ,\theta, 0, a ) where a is the half-angle d subtended. See Appendix A3 ZH Coefficients for Spherical Light Source for the expressions through order 6.
[/quote]

I assume a = r/d, where d is infinite and thus a = 0.
I've looked into the Appendix for L = 1, ...., 6:

[quote]
L=0: ?sqrt(?)(?1+cos(a))
L =1: 1/2 sqrt(3) sqrt(?) sin(a)2
L=2: ?1/2 * sqrt(5) * sqrt(?) * cos(a) (?1 + cos(a)) (cos(a) + 1)
L=3 ?1/8 *sqrt(7)* sqrt(?) (?1 + cos(a)) (cos(a) + 1) (5 cos(a)^2 ? 1)
L=4 ?3/8*sqrt(?)*cos(a) (?1 + cos(a)) (cos(a) + 1) (7 cos(a)2 ? 3)
L=5 ? 1/16* sqrt(11)*sqrt(?)* (?1 + cos(a)) (cos(a) + 1) (21 cos(a)4 ? 14 cos(a)2 + 1)

[/quote]


So, clearly, all coefficients will be 0 due to the term (-1 + cos(a)), which is 0 for a = 0.


Where is the flaw in my derivation?
0

Share this post


Link to post
Share on other sites
[quote name='opengl_beginner' timestamp='1353232839' post='5001995']
Hey ginkgo! Well, yes - but isn't that exactly the idea behind spherical harmonics - approximating a function using a polynomial of a finite degree (e.g. degree 2 already gives an error rate less than 1%).

[/quote]

Yes, you generally use spherical harmonics as a means of approximating some function defined about a sphere using a compact set of coefficients. The issue that ginkgo was alluding to has to do with the fact that spherical harmonics are essentially a frequency-space representation of a function, where lower coefficients correspond lower-frequency components of the function and the higher coefficients correspond to higher-frequency components. With your typical "punctual" light source (point light, directional light, etc.) the incoming radiance in terms of a sphere surrounding some point in space (such as the surface you're rendering) is essentially a dirac delta function. A delta function would require infinite coefficients to be represented in spherical harmonics, so it's basically impossible. You can get the best approximation for some SH order by directly projecting the direction of the delta onto the basis functions (which is mentioned in Stupid SH tricks), but if you were to display the results for 2nd-order SH you'd find that you basically end up with a big low-frequency blob oriented about the direction. This is why "area" lights that have some volume associated with them work better with SH, since they can be represented better with less coefficients. The same goes for any function defined about a sphere, for instance a BRDF or an NDF. Edited by MJP
2

Share this post


Link to post
Share on other sites
MJP's explanation is exactly right. It would be much easier to develop some intuition for this using Fourier series to approximate a delta function.

"Projecting the direction of the delta onto the basis functions" is the same thing as evaluating the basis functions at the point where the delta is centered, so in the case of Fourier series, you just get cos(x) + cos(2x) + cos(3x) + cos(4x) + ... as an approximation to the delta function centered at 0.

You can see it here expanded up to cos(10x): http://fooplot.com/plot/k49yaatz5z

I expect the equivalent situation in spherical harmonics will also have funny ripples that it would take many terms to make small. A delta function is just not something that can be well approximated with low-frequency functions.
1

Share this post


Link to post
Share on other sites
[quote name='Álvaro' timestamp='1353281435' post='5002156']
I expect the equivalent situation in spherical harmonics will also have funny ripples that it would take many terms to make small.
[/quote]

Indeed. The visual artifacts caused by this sort of "ringing" can actually be very severe when you're working with HDR intensities. Edited by MJP
0

Share this post


Link to post
Share on other sites
Firstly, thanks all, for your remarks. Things are becoming much clearer now.
I would like to say the following.

1) Although, I do not quite understand why a point light source is a Dirac Delta function in the frequency space. I know that the span of the spatial domain is inversely proportional to the span in the frequency domain, i.e. if a function is spread in (x, y, z) coordinates, it will be concentrated in the frequency domain.
BUT - a point light source is concentrated in the spatial domain (it's just a line) and thus, I would expect it to be spread out in the frequency domain.
Why is this not the case?


2) Perhaps I should explain what the motivation behind the problem is. Very often we come across images which contain dark spots. By adding a point light source to the current scene illumination, I wanted to make these spots lighter, i.e. 'more visible'. Since all of you are advising against using a point light source, do you see any other variant of how to address this problem?

Thanks,
opengl_beginner Edited by opengl_beginner
0

Share this post


Link to post
Share on other sites
Point lights being Dirac delta functions has nothing to do with frequency space. The function that we are trying to approximate using spherical harmonics is the radiant intensity (measured in Watts per steradian). If light is coming concentrated from a single point, that function is actually a delta (some amount of light is coming from a single point, which means something like infinite radiant intensity at that particular point).

By the way, delta functions are not actually functions: They are measures. I felt dirty after having written the paragraph above. :) Edited by Álvaro
0

Share this post


Link to post
Share on other sites
[quote name='opengl_beginner' timestamp='1353318805' post='5002294']
1) Although, I do not quite understand why a point light source is a Dirac Delta function in the frequency space. I know that the span of the spatial domain is inversely proportional to the span in the frequency domain, i.e. if a function is spread in (x, y, z) coordinates, it will be concentrated in the frequency domain.
BUT - a point light source is concentrated in the spatial domain (it's just a line) and thus, I would expect it to be spread out in the frequency domain.
Why is this not the case?
[/quote]

A point light is a delta in the [i]spatial domain[/i], not the frequency domain. A point light is infinitely small, so in the frequency domain the response is infinitely large (hence why you need infinite SH coefficients).

[quote name='opengl_beginner' timestamp='1353318805' post='5002294']
2) Perhaps I should explain what the motivation behind the problem is. Very often we come across images which contain dark spots. By adding a point light source to the current scene illumination, I wanted to make these spots lighter, i.e. 'more visible'. Since all of you are advising against using a point light source, do you see any other variant of how to address this problem?
[/quote]

Well you can still somewhat approximate the contribution (irradiance) from a point light source if you only care about diffuse, and not specular. Just project it onto SH, and convolve with a cosine kernel to SH containing lambertian reflectance. Then you just "look up" into the SH at runtime in your shader by projecting your normal direction onto SH and calculating a dot product between the two SH vectors. You can even roll the cosine convolution into the runtime lookup, since it's just a multiply by 3 scalars. Games have done this in the past to approximate the contribution from "unimportant" light sources. Like I said before though you may ringing artifacts if you project lights that can have high intensities.
0

Share this post


Link to post
Share on other sites
[quote name='Álvaro' timestamp='1353334971' post='5002344']
By the way, delta functions are not actually functions
[/quote]

[code]
double const diracDelta( std::function<double const(double const) > testFunction )
{
return testFunction(0.0);
}
[/code]

:-D

*ducks*
0

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!


Register a new account

Sign in

Already have an account? Sign in here.


Sign In Now
Sign in to follow this  
Followers 0