• Announcements

    • khawk

      Download the Game Design and Indie Game Marketing Freebook   07/19/17

      GameDev.net and CRC Press have teamed up to bring a free ebook of content curated from top titles published by CRC Press. The freebook, Practices of Game Design & Indie Game Marketing, includes chapters from The Art of Game Design: A Book of Lenses, A Practical Guide to Indie Game Marketing, and An Architectural Approach to Level Design. The GameDev.net FreeBook is relevant to game designers, developers, and those interested in learning more about the challenges in game development. We know game development can be a tough discipline and business, so we picked several chapters from CRC Press titles that we thought would be of interest to you, the GameDev.net audience, in your journey to design, develop, and market your next game. The free ebook is available through CRC Press by clicking here. The Curated Books The Art of Game Design: A Book of Lenses, Second Edition, by Jesse Schell Presents 100+ sets of questions, or different lenses, for viewing a game’s design, encompassing diverse fields such as psychology, architecture, music, film, software engineering, theme park design, mathematics, anthropology, and more. Written by one of the world's top game designers, this book describes the deepest and most fundamental principles of game design, demonstrating how tactics used in board, card, and athletic games also work in video games. It provides practical instruction on creating world-class games that will be played again and again. View it here. A Practical Guide to Indie Game Marketing, by Joel Dreskin Marketing is an essential but too frequently overlooked or minimized component of the release plan for indie games. A Practical Guide to Indie Game Marketing provides you with the tools needed to build visibility and sell your indie games. With special focus on those developers with small budgets and limited staff and resources, this book is packed with tangible recommendations and techniques that you can put to use immediately. As a seasoned professional of the indie game arena, author Joel Dreskin gives you insight into practical, real-world experiences of marketing numerous successful games and also provides stories of the failures. View it here. An Architectural Approach to Level Design This is one of the first books to integrate architectural and spatial design theory with the field of level design. The book presents architectural techniques and theories for level designers to use in their own work. It connects architecture and level design in different ways that address the practical elements of how designers construct space and the experiential elements of how and why humans interact with this space. Throughout the text, readers learn skills for spatial layout, evoking emotion through gamespaces, and creating better levels through architectural theory. View it here. Learn more and download the ebook by clicking here. Did you know? GameDev.net and CRC Press also recently teamed up to bring GDNet+ Members up to a 20% discount on all CRC Press books. Learn more about this and other benefits here.
Sign in to follow this  
Followers 0
crancran

Game State Management

1 post in this topic

When I was researching game state management a while back, I found the traditional stack-based finite state machine highly recommended. I implemented the system in a current game but there are aspects of this design that feel a bit flawed and often too restrictive.

In a networked game, you might have states such as Login, SelectAvatar, and Play. By using a stack-based approach for states, you might consider establishing your server connection in the Login state and by using the stack, that connection can remain open & valid until the Login state is either destroyed or some event triggers the destruction of the connection.

But lets assume that during the Play state a loss of connectivity happens, now the player must be sent to the login screen. Since we've built up this stack of states, navigation back to the start isn't easy. Using a switch() call won't eliminate the states that exist below the play state. Furthermore it seems like bad design to allow passing a numeric count to pop() to remove N number of states from the stack too, particularly if N could vary depending on various conditions.

An alternate would be to avoid using the stack all together and instead traverse linearly between the three states. Since games often use a layered systems approach, there would likely be some network layer abstraction or subsystem that could hold the references to connections made and simply provide an API that various states could use to interact with the connection. Therefore, the connection is established in one state may cleaned up by another. That again feels like poor design to me but maybe others feel it's typical.

I have seen references where game states are treated like screens. Now we're wrapping UI aspects into these states. If you've approached game state using a stack-based approach, that may or may not work well with aspects around UI. By nature, UI is generally not stack-driven. You often have more than one UI screen open at any given time which may need input, logic updates, etc. Furthermore, UI screens can be opened in varying order and depending upon the order of operations, you get different outcomes. For example, opening panel A followed by panel B implies that A would get closed. But if you opened panel B first followed by panel A, then both are acceptably open with no conflicts. One could introduce panel C into the picture which can be opened or closed independently from the other two panel's open/close order.

This has all lead me to believe that trying to approach game state management like this feels like really poor design. I have begun to feel that a different approach is needed, perhaps multiple state machines per subsystem. In order for these subsystem state machines to interact is through some event/messaging system or well defined subsystem interfaces.

But before I take any approach, I'm curious how others have addressed game state around managing your UI interactions and various screens with other subsystems like networking and audio where you create a connection/sound in one state and it remains active until another state is reached downstream. It could simply be my approach using the stack-based solution is flawed somehow and if so, feel free to correct me where my understanding may be inaccurate. Edited by crancran
0

Share this post


Link to post
Share on other sites
I usually use state classes that use the run and return successor pattern. Basically every function called on a state object returns a smart pointer to the state that the system should be in now. This can be a pointer to the original state. If states need to be composed or a state otherwise needs reference to a previous state, then states can pass smart pointers to themselves as arguments to constructors for other states. This means you can build up a stack if you want, but still have the freedom to discard the stack at any time.

I don't see any particular issue in doing things like sharing connection objects between states. If everything is properly encapsulated and destructors properly defined, etc. then you can do things like pass a shared pointer and destruction will take care of clean up.
0

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!


Register a new account

Sign in

Already have an account? Sign in here.


Sign In Now
Sign in to follow this  
Followers 0