• Announcements

    • khawk

      Download the Game Design and Indie Game Marketing Freebook   07/19/17

      GameDev.net and CRC Press have teamed up to bring a free ebook of content curated from top titles published by CRC Press. The freebook, Practices of Game Design & Indie Game Marketing, includes chapters from The Art of Game Design: A Book of Lenses, A Practical Guide to Indie Game Marketing, and An Architectural Approach to Level Design. The GameDev.net FreeBook is relevant to game designers, developers, and those interested in learning more about the challenges in game development. We know game development can be a tough discipline and business, so we picked several chapters from CRC Press titles that we thought would be of interest to you, the GameDev.net audience, in your journey to design, develop, and market your next game. The free ebook is available through CRC Press by clicking here. The Curated Books The Art of Game Design: A Book of Lenses, Second Edition, by Jesse Schell Presents 100+ sets of questions, or different lenses, for viewing a game’s design, encompassing diverse fields such as psychology, architecture, music, film, software engineering, theme park design, mathematics, anthropology, and more. Written by one of the world's top game designers, this book describes the deepest and most fundamental principles of game design, demonstrating how tactics used in board, card, and athletic games also work in video games. It provides practical instruction on creating world-class games that will be played again and again. View it here. A Practical Guide to Indie Game Marketing, by Joel Dreskin Marketing is an essential but too frequently overlooked or minimized component of the release plan for indie games. A Practical Guide to Indie Game Marketing provides you with the tools needed to build visibility and sell your indie games. With special focus on those developers with small budgets and limited staff and resources, this book is packed with tangible recommendations and techniques that you can put to use immediately. As a seasoned professional of the indie game arena, author Joel Dreskin gives you insight into practical, real-world experiences of marketing numerous successful games and also provides stories of the failures. View it here. An Architectural Approach to Level Design This is one of the first books to integrate architectural and spatial design theory with the field of level design. The book presents architectural techniques and theories for level designers to use in their own work. It connects architecture and level design in different ways that address the practical elements of how designers construct space and the experiential elements of how and why humans interact with this space. Throughout the text, readers learn skills for spatial layout, evoking emotion through gamespaces, and creating better levels through architectural theory. View it here. Learn more and download the ebook by clicking here. Did you know? GameDev.net and CRC Press also recently teamed up to bring GDNet+ Members up to a 20% discount on all CRC Press books. Learn more about this and other benefits here.
Sign in to follow this  
Followers 0
trevex

OpenGL
Deferred Rendering Problem

10 posts in this topic

I am currently working on a small deferred rendering engine for this semester's coursework assignment. The code compiles fine and runs in Visual Studio without any problems except no output to the screen and that's where the problems start.

The deferred rendering system is nothing special it is basically the first draft of the algorithms presented in "Practical Rendering with DirectX 11" [2011 by Jason Zink, Matt Pettineo, Jack Hoxley]. No optimization like Attribute packing etc. are used. Only a simple Lighting system is used (no shadow).

The problems seems to be the fullscreen-quad(simply inefficient fullscreen-quads used for lighting passes) or a general problem. Since I get no errors in the debug log I tried to use PIX and PerfStudio to get some more information on the gpu side. Unfortunately PIX and PerfStudio are before the first frame with this error:

Invalid allocation size: 4294967295 bytes

So for whatever reason it seems to allocate some space with -1 bytes. Awkwardly everything is fine in VisualStudio debugging... and if I attach a debugger to the PIX process and break when the error happens I land in a debuggers header file.

I just started using DirectX with prior OpenGL experience, so I hope I did not something generally wrong. I used the executable that was output by the compiler in debug mode.

To avoid general logic mistakes, here is roughly what I currently do:

1. SetDepthStencilState (with DepthTest enabled)
2. clear all RenderTargetViews (was unsure about gBuffer but gBuffer is being cleared as well currently) and DepthStencilBuffer
3. bind gBuffer and DepthStencilBuffer
4. render Geometry
5. disable DepthTest
6. bind Backbuffer
7. render all lights with the associated shader (since I am using the effects framework I set the BlendState in the shader)
8. render CEGUI (works fine even if rest doesn't output anything)
9. present()

The lights are as already mentioned fullscreen quads. The lighting technique is simply passing the position through, so the quads vertices are in the range [-1, 1].

If you need any additional informations let me know.

Thanks, Nik

P.S. sorry for the bad english...


EDIT:

For further informations: The vertices and indices of the fullscreen quad

glm::vec3 vertices[] =    {		glm::vec3(-1.0f, -1.0f,  1.0f),		glm::vec3(-1.0f,  1.0f,  1.0f),		glm::vec3( 1.0f, -1.0f,  1.0f),		glm::vec3( 1.0f,  1.0f,  1.0f),    };	    UINT indices[] = { 0, 3, 2, 2, 0, 1 };


And a rough walkthough the code:

// before geometry pass
        m_d3dImmediateContext->RSSetState(m_RasterState);
	m_d3dImmediateContext->OMSetDepthStencilState(m_GeometryDepthStencilState, 1);
	m_d3dImmediateContext->ClearRenderTargetView(m_RenderTargetView, reinterpret_cast<const float*>(&clearColor));
	m_d3dImmediateContext->ClearRenderTargetView(m_gBuffer[0], reinterpret_cast<const float*>(&clearColor));
	m_d3dImmediateContext->ClearRenderTargetView(m_gBuffer[1], reinterpret_cast<const float*>(&clearColor));
	m_d3dImmediateContext->ClearRenderTargetView(m_gBuffer[2], reinterpret_cast<const float*>(&clearColor));
	m_d3dImmediateContext->ClearRenderTargetView(m_gBuffer[3], reinterpret_cast<const float*>(&clearColor));
	m_d3dImmediateContext->ClearDepthStencilView(m_DepthStencilView, D3D11_CLEAR_DEPTH|D3D11_CLEAR_STENCIL, 1.0f, 0);
	m_d3dImmediateContext->OMSetRenderTargets(4, m_gBuffer, m_DepthStencilView);

// before lighting pass
        m_d3dImmediateContext->OMSetDepthStencilState(m_LightingDepthStencilState, 1);
	m_d3dImmediateContext->OMSetRenderTargets(1, &m_RenderTargetView, m_DepthStencilView);
	DXLightingShader->enable();

// DXLightingShader::enable (the static cast is necessary because the engine supports opengl and directx this is my dirty way
        static_cast<SDXRenderInfo*>(g_RenderInfo)->context->IASetInputLayout(m_InputLayout);
	static_cast<SDXRenderInfo*>(g_RenderInfo)->context->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST);
	m_fxNormalMap->SetResource(m_NormalView);
	m_fxDiffuseMap->SetResource(m_DiffuseView);
	m_fxSpecularMap->SetResource(m_SpecularView);
	m_fxPositionMap->SetResource(m_PositionView);
	m_fxCameraPos->SetFloatVector(Camera->getPosition());

// depending on light-type this is how it is drawn
        for(UINT p = 0; p < m_DirectionalLightDesc.Passes; ++p)
	{
		m_DirectionalLight->GetPassByIndex(p)->Apply(0, static_cast<SDXRenderInfo*>(g_RenderInfo)->context);
		static_cast<SDXRenderInfo*>(g_RenderInfo)->context->DrawIndexed(6, 0, 0);
	}

// present function called after light passes
        DXLightingShader->disable();
	CEGUI::System::getSingleton().renderGUI();
	HR(m_SwapChain->Present(0, 0));

// DXLightingShader::disable
        m_fxNormalMap->SetResource(NULL);
	m_fxDiffuseMap->SetResource(NULL);
	m_fxSpecularMap->SetResource(NULL);
	m_fxPositionMap->SetResource(NULL);
	m_DirectionalLight->GetPassByIndex(0)->Apply(0, static_cast<SDXRenderInfo*>(g_RenderInfo)->context);



If you need more information or some details of the shader implementation let me know Edited by trevex
0

Share this post


Link to post
Share on other sites
Invalid allocation size: 4294967295 bytes

 

 

What makes you think this has anything to do with your deferred rendering setup? It could simply be an uninitialized variable somewhere else in your code. What header file do you break into?

1

Share this post


Link to post
Share on other sites

Thanks for the tip. I am currently in chrismas stress but I am trying to debug the application again now.

 

So I figured out what the problem was, it was quite simple actually... Visual Studio has a different runtime environment, so pix wasn't able to find some files...

 

I am investigating why it is not rendering now, I'll hopefully come back with more informations later...

0

Share this post


Link to post
Share on other sites

So I started debugging a frame with pix:

 

The 4 gBuffer textures are successfully being rendered.

The problem seems to be the fullscreen quad:

 

33kt2ky.png

 

 

Since in the viewport output there is only a whiteline it seems to get discarded?

0

Share this post


Link to post
Share on other sites

With z < 0 you're out of clipspace already. And a w of 0 will even send them to infinity. Can you show us that vertex shader code (and the transformation matrix values involved, if available).

1

Share this post


Link to post
Share on other sites

Sure, sorry for delayed reply chrismas time...

 

[code] 

float4 VSMain(in float3 Position : POSITION) : SV_Position 
     return float4(Position, 0.0f); 
}
[/code]

 

for what ever reason the z value is always -1.0 also the preVS value...

but this is the vertex data in the associated buffer:

 

[code] 

glm::vec3 vertices[] =
    {
glm::vec3(-1.0f, -1.0f,  1.0f),
glm::vec3(-1.0f,  1.0f,  1.0f),
glm::vec3( 1.0f, -1.0f,  1.0f),
glm::vec3( 1.0f,  1.0f,  1.0f),
    };
[/code]

 

As already stated out previously I am new to directx, so is there anything that can influence how vertex data is interpreted since the preVS value is also -1? 

0

Share this post


Link to post
Share on other sites
Ok just noticed I was setting last value to 0.0 and not 1.0...
The problem now is I changed the z value of the input vertices to 0.0f no change, I changed the shader to set the z value to 0.0f I get some output, still not the right shaded cube but it seems to be a problem with my lighting code...

But this would be kind of a dirty fix, so why is the Z value being set to -1...? Edited by trevex
0

Share this post


Link to post
Share on other sites
Ah, already further, so yeah, your new vertex shader is probably fine. You can even do
float4 VSMain(in float4 Position : POSITION) : SV_Position
{
    return Position;
}
since w = 1 will happen automatically. This is the rare occasion where signature and layout may differ.

But your problem is elsewhere. PreVS means either your buffer init/update or your input layout is off - or you've bound the wrong buffer(s).
1

Share this post


Link to post
Share on other sites
Thanks alot indeed I forgot to set the VertexBuffer and since the vertices of my cube are quite similar, I didn't notice that. Can't believe I haven't noticed that...

The only thing left now is a bug in my lighting code, some surfaces stay black... The scene currently uses a single directional light for testing!
float3 CalcLighting(in float3 normal, in float3 position, in float3 diffuseAlbedo, in float3 specularAlbedo, in float specularPower, uniform int gLightingMode) 
{  
float3 L = 0; 
float attenuation = 1.0f; 
if (gLightingMode == POINTLIGHT || gLightingMode == SPOTLIGHT)
{
L = LightPos - position; 
float dist = length(L); 
attenuation = max(0, 1.0f - (dist / LightRange.x)); 
L /= dist;
}
else if (gLightingMode == DIRECTIONALLIGHT)
{
L = -LightDirection; }if (gLightingMode == SPOTLIGHT)
{
float3 L2 = LightDirection; 
float rho = dot(-L, L2); 
attenuation *= saturate((rho - SpotlightAngles.y) / (SpotlightAngles.x - SpotlightAngles.y)); 
}
float nDotL = saturate(dot(normal, L)); 
float3 diffuse = nDotL * LightColor * diffuseAlbedo;
float3 V = CameraPos - position; 
float3 H = normalize(L + V);
float3 specular = pow(saturate(dot(normal, H)), specularPower) * LightColor * specularAlbedo.xyz * nDotL; 
return (diffuse + specular) * attenuation;
}
The basic algorithm is basically out of a book so I assumed there would be nothing wrong the only thing I changed is using if and a uniform to embed it in an effects file.

The Buffers are filled with informations and there is nothing missing, these are values of a black pixel that is supposed to have some color:
11h3rxj.png

EDIT:

Lighting Shader Code on pastebin http://pastebin.com/8gbYBLCX, because the code tags seem to be buggy currently either escaping html as well or completly breaking formating Edited by trevex
0

Share this post


Link to post
Share on other sites

What color do you expect the surface to be? The vector L / -LightDirection (unnormalized) hits the surface orthogonal to its normal, so nDotL equals zero. Since both the diffuse and the specular coefficient are multiplied by nDotL the surface reflects no light. If you don't want to fade specular hi-lights with the light's incidence, you should remove the last '* nDotL'.

1

Share this post


Link to post
Share on other sites

You are right, thanks alot for all the help, I am successfully rendering loads of pointlight, spotlight etc. now... Best christmas present so far :)

0

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!


Register a new account

Sign in

Already have an account? Sign in here.


Sign In Now
Sign in to follow this  
Followers 0

  • Similar Content

    • By DaniDesu
      #include "MyEngine.h" int main() { MyEngine myEngine; myEngine.run(); return 0; } MyEngine.h
      #pragma once #include "MyWindow.h" #include "MyShaders.h" #include "MyShapes.h" class MyEngine { private: GLFWwindow * myWindowHandle; MyWindow * myWindow; public: MyEngine(); ~MyEngine(); void run(); }; MyEngine.cpp
      #include "MyEngine.h" MyEngine::MyEngine() { MyWindow myWindow(800, 600, "My Game Engine"); this->myWindow = &myWindow; myWindow.createWindow(); this->myWindowHandle = myWindow.getWindowHandle(); // Load all OpenGL function pointers for use gladLoadGLLoader((GLADloadproc)glfwGetProcAddress); } MyEngine::~MyEngine() { this->myWindow->destroyWindow(); } void MyEngine::run() { MyShaders myShaders("VertexShader.glsl", "FragmentShader.glsl"); MyShapes myShapes; GLuint vertexArrayObjectHandle; float coordinates[] = { 0.5f, 0.5f, 0.0f, 0.5f, -0.5f, 0.0f, -0.5f, 0.5f, 0.0f }; vertexArrayObjectHandle = myShapes.drawTriangle(coordinates); while (!glfwWindowShouldClose(this->myWindowHandle)) { glClearColor(0.5f, 0.5f, 0.5f, 1.0f); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Draw something glUseProgram(myShaders.getShaderProgram()); glBindVertexArray(vertexArrayObjectHandle); glDrawArrays(GL_TRIANGLES, 0, 3); glfwSwapBuffers(this->myWindowHandle); glfwPollEvents(); } } MyShaders.h
      #pragma once #include <glad\glad.h> #include <GLFW\glfw3.h> #include "MyFileHandler.h" class MyShaders { private: const char * vertexShaderFileName; const char * fragmentShaderFileName; const char * vertexShaderCode; const char * fragmentShaderCode; GLuint vertexShaderHandle; GLuint fragmentShaderHandle; GLuint shaderProgram; void compileShaders(); public: MyShaders(const char * vertexShaderFileName, const char * fragmentShaderFileName); ~MyShaders(); GLuint getShaderProgram(); const char * getVertexShaderCode(); const char * getFragmentShaderCode(); }; MyShaders.cpp
      #include "MyShaders.h" MyShaders::MyShaders(const char * vertexShaderFileName, const char * fragmentShaderFileName) { this->vertexShaderFileName = vertexShaderFileName; this->fragmentShaderFileName = fragmentShaderFileName; // Load shaders from files MyFileHandler myVertexShaderFileHandler(this->vertexShaderFileName); this->vertexShaderCode = myVertexShaderFileHandler.readFile(); MyFileHandler myFragmentShaderFileHandler(this->fragmentShaderFileName); this->fragmentShaderCode = myFragmentShaderFileHandler.readFile(); // Compile shaders this->compileShaders(); } MyShaders::~MyShaders() { } void MyShaders::compileShaders() { this->vertexShaderHandle = glCreateShader(GL_VERTEX_SHADER); this->fragmentShaderHandle = glCreateShader(GL_FRAGMENT_SHADER); glShaderSource(this->vertexShaderHandle, 1, &(this->vertexShaderCode), NULL); glShaderSource(this->fragmentShaderHandle, 1, &(this->fragmentShaderCode), NULL); glCompileShader(this->vertexShaderHandle); glCompileShader(this->fragmentShaderHandle); this->shaderProgram = glCreateProgram(); glAttachShader(this->shaderProgram, this->vertexShaderHandle); glAttachShader(this->shaderProgram, this->fragmentShaderHandle); glLinkProgram(this->shaderProgram); return; } GLuint MyShaders::getShaderProgram() { return this->shaderProgram; } const char * MyShaders::getVertexShaderCode() { return this->vertexShaderCode; } const char * MyShaders::getFragmentShaderCode() { return this->fragmentShaderCode; } MyWindow.h
      #pragma once #include <glad\glad.h> #include <GLFW\glfw3.h> class MyWindow { private: GLFWwindow * windowHandle; int windowWidth; int windowHeight; const char * windowTitle; public: MyWindow(int windowWidth, int windowHeight, const char * windowTitle); ~MyWindow(); GLFWwindow * getWindowHandle(); void createWindow(); void MyWindow::destroyWindow(); }; MyWindow.cpp
      #include "MyWindow.h" MyWindow::MyWindow(int windowWidth, int windowHeight, const char * windowTitle) { this->windowHandle = NULL; this->windowWidth = windowWidth; this->windowWidth = windowWidth; this->windowHeight = windowHeight; this->windowTitle = windowTitle; glfwInit(); } MyWindow::~MyWindow() { } GLFWwindow * MyWindow::getWindowHandle() { return this->windowHandle; } void MyWindow::createWindow() { // Use OpenGL 3.3 and GLSL 3.3 glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3); glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3); // Limit backwards compatibility glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE); glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE); // Prevent resizing window glfwWindowHint(GLFW_RESIZABLE, GL_FALSE); // Create window this->windowHandle = glfwCreateWindow(this->windowWidth, this->windowHeight, this->windowTitle, NULL, NULL); glfwMakeContextCurrent(this->windowHandle); } void MyWindow::destroyWindow() { glfwTerminate(); } MyShapes.h
      #pragma once #include <glad\glad.h> #include <GLFW\glfw3.h> class MyShapes { public: MyShapes(); ~MyShapes(); GLuint & drawTriangle(float coordinates[]); }; MyShapes.cpp
      #include "MyShapes.h" MyShapes::MyShapes() { } MyShapes::~MyShapes() { } GLuint & MyShapes::drawTriangle(float coordinates[]) { GLuint vertexBufferObject{}; GLuint vertexArrayObject{}; // Create a VAO glGenVertexArrays(1, &vertexArrayObject); glBindVertexArray(vertexArrayObject); // Send vertices to the GPU glGenBuffers(1, &vertexBufferObject); glBindBuffer(GL_ARRAY_BUFFER, vertexBufferObject); glBufferData(GL_ARRAY_BUFFER, sizeof(coordinates), coordinates, GL_STATIC_DRAW); // Dertermine the interpretation of the array buffer glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3*sizeof(float), (void *)0); glEnableVertexAttribArray(0); // Unbind the buffers glBindBuffer(GL_ARRAY_BUFFER, 0); glBindVertexArray(0); return vertexArrayObject; } MyFileHandler.h
      #pragma once #include <cstdio> #include <cstdlib> class MyFileHandler { private: const char * fileName; unsigned long fileSize; void setFileSize(); public: MyFileHandler(const char * fileName); ~MyFileHandler(); unsigned long getFileSize(); const char * readFile(); }; MyFileHandler.cpp
      #include "MyFileHandler.h" MyFileHandler::MyFileHandler(const char * fileName) { this->fileName = fileName; this->setFileSize(); } MyFileHandler::~MyFileHandler() { } void MyFileHandler::setFileSize() { FILE * fileHandle = NULL; fopen_s(&fileHandle, this->fileName, "rb"); fseek(fileHandle, 0L, SEEK_END); this->fileSize = ftell(fileHandle); rewind(fileHandle); fclose(fileHandle); return; } unsigned long MyFileHandler::getFileSize() { return (this->fileSize); } const char * MyFileHandler::readFile() { char * buffer = (char *)malloc((this->fileSize)+1); FILE * fileHandle = NULL; fopen_s(&fileHandle, this->fileName, "rb"); fread(buffer, this->fileSize, sizeof(char), fileHandle); fclose(fileHandle); buffer[this->fileSize] = '\0'; return buffer; } VertexShader.glsl
      #version 330 core layout (location = 0) vec3 VertexPositions; void main() { gl_Position = vec4(VertexPositions, 1.0f); } FragmentShader.glsl
      #version 330 core out vec4 FragmentColor; void main() { FragmentColor = vec4(1.0f, 0.0f, 0.0f, 1.0f); } I am attempting to create a simple engine/graphics utility using some object-oriented paradigms. My first goal is to get some output from my engine, namely, a simple red triangle.
      For this goal, the MyShapes class will be responsible for defining shapes such as triangles, polygons etc. Currently, there is only a drawTriangle() method implemented, because I first wanted to see whether it works or not before attempting to code other shape drawing methods.
      The constructor of the MyEngine class creates a GLFW window (GLAD is also initialized here to load all OpenGL functionality), and the myEngine.run() method in Main.cpp is responsible for firing up the engine. In this run() method, the shaders get loaded from files via the help of my FileHandler class. The vertices for the triangle are processed by the myShapes.drawTriangle() method where a vertex array object, a vertex buffer object and vertrex attributes are set for this purpose.
      The while loop in the run() method should be outputting me the desired red triangle, but all I get is a grey window area. Why?
      Note: The shaders are compiling and linking without any errors.
      (Note: I am aware that this code is not using any good software engineering practices (e.g. exceptions, error handling). I am planning to implement them later, once I get the hang of OpenGL.)

       
    • By KarimIO
      EDIT: I thought this was restricted to Attribute-Created GL contexts, but it isn't, so I rewrote the post.
      Hey guys, whenever I call SwapBuffers(hDC), I get a crash, and I get a "Too many posts were made to a semaphore." from Windows as I call SwapBuffers. What could be the cause of this?
      Update: No crash occurs if I don't draw, just clear and swap.
      static PIXELFORMATDESCRIPTOR pfd = // pfd Tells Windows How We Want Things To Be { sizeof(PIXELFORMATDESCRIPTOR), // Size Of This Pixel Format Descriptor 1, // Version Number PFD_DRAW_TO_WINDOW | // Format Must Support Window PFD_SUPPORT_OPENGL | // Format Must Support OpenGL PFD_DOUBLEBUFFER, // Must Support Double Buffering PFD_TYPE_RGBA, // Request An RGBA Format 32, // Select Our Color Depth 0, 0, 0, 0, 0, 0, // Color Bits Ignored 0, // No Alpha Buffer 0, // Shift Bit Ignored 0, // No Accumulation Buffer 0, 0, 0, 0, // Accumulation Bits Ignored 24, // 24Bit Z-Buffer (Depth Buffer) 0, // No Stencil Buffer 0, // No Auxiliary Buffer PFD_MAIN_PLANE, // Main Drawing Layer 0, // Reserved 0, 0, 0 // Layer Masks Ignored }; if (!(hDC = GetDC(windowHandle))) return false; unsigned int PixelFormat; if (!(PixelFormat = ChoosePixelFormat(hDC, &pfd))) return false; if (!SetPixelFormat(hDC, PixelFormat, &pfd)) return false; hRC = wglCreateContext(hDC); if (!hRC) { std::cout << "wglCreateContext Failed!\n"; return false; } if (wglMakeCurrent(hDC, hRC) == NULL) { std::cout << "Make Context Current Second Failed!\n"; return false; } ... // OGL Buffer Initialization glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT); glBindVertexArray(vao); glUseProgram(myprogram); glDrawElements(GL_TRIANGLES, indexCount, GL_UNSIGNED_SHORT, (void *)indexStart); SwapBuffers(GetDC(window_handle));  
    • By Tchom
      Hey devs!
       
      I've been working on a OpenGL ES 2.0 android engine and I have begun implementing some simple (point) lighting. I had something fairly simple working, so I tried to get fancy and added color-tinting light. And it works great... with only one or two lights. Any more than that, the application drops about 15 frames per light added (my ideal is at least 4 or 5). I know implementing lighting is expensive, I just didn't think it was that expensive. I'm fairly new to the world of OpenGL and GLSL, so there is a good chance I've written some crappy shader code. If anyone had any feedback or tips on how I can optimize this code, please let me know.
       
      Vertex Shader
      uniform mat4 u_MVPMatrix; uniform mat4 u_MVMatrix; attribute vec4 a_Position; attribute vec3 a_Normal; attribute vec2 a_TexCoordinate; varying vec3 v_Position; varying vec3 v_Normal; varying vec2 v_TexCoordinate; void main() { v_Position = vec3(u_MVMatrix * a_Position); v_TexCoordinate = a_TexCoordinate; v_Normal = vec3(u_MVMatrix * vec4(a_Normal, 0.0)); gl_Position = u_MVPMatrix * a_Position; } Fragment Shader
      precision mediump float; uniform vec4 u_LightPos["+numLights+"]; uniform vec4 u_LightColours["+numLights+"]; uniform float u_LightPower["+numLights+"]; uniform sampler2D u_Texture; varying vec3 v_Position; varying vec3 v_Normal; varying vec2 v_TexCoordinate; void main() { gl_FragColor = (texture2D(u_Texture, v_TexCoordinate)); float diffuse = 0.0; vec4 colourSum = vec4(1.0); for (int i = 0; i < "+numLights+"; i++) { vec3 toPointLight = vec3(u_LightPos[i]); float distance = length(toPointLight - v_Position); vec3 lightVector = normalize(toPointLight - v_Position); float diffuseDiff = 0.0; // The diffuse difference contributed from current light diffuseDiff = max(dot(v_Normal, lightVector), 0.0); diffuseDiff = diffuseDiff * (1.0 / (1.0 + ((1.0-u_LightPower[i])* distance * distance))); //Determine attenuatio diffuse += diffuseDiff; gl_FragColor.rgb *= vec3(1.0) / ((vec3(1.0) + ((vec3(1.0) - vec3(u_LightColours[i]))*diffuseDiff))); //The expensive part } diffuse += 0.1; //Add ambient light gl_FragColor.rgb *= diffuse; } Am I making any rookie mistakes? Or am I just being unrealistic about what I can do? Thanks in advance
    • By yahiko00
      Hi,
      Not sure to post at the right place, if not, please forgive me...
      For a game project I am working on, I would like to implement a 2D starfield as a background.
      I do not want to deal with static tiles, since I plan to slowly animate the starfield. So, I am trying to figure out how to generate a random starfield for the entire map.
      I feel that using a uniform distribution for the stars will not do the trick. Instead I would like something similar to the screenshot below, taken from the game Star Wars: Empire At War (all credits to Lucasfilm, Disney, and so on...).

      Is there someone who could have an idea of a distribution which could result in such a starfield?
      Any insight would be appreciated
    • By afraidofdark
      I have just noticed that, in quake 3 and half - life, dynamic models are effected from light map. For example in dark areas, gun that player holds seems darker. How did they achieve this effect ? I can use image based lighting techniques however (Like placing an environment probe and using it for reflections and ambient lighting), this tech wasn't used in games back then, so there must be a simpler method to do this.
      Here is a link that shows how modern engines does it. Indirect Lighting Cache It would be nice if you know a paper that explains this technique. Can I apply this to quake 3' s light map generator and bsp format ?
  • Popular Now