Sign in to follow this  
solenoidz

OpenGL Porting to OpenGL

Recommended Posts

Hello people.

 

I have a Direct3D 9.0 engine and I want to add an OpenGL renderer.

The engine uses deferred lighting with Shader model 3.0 and unfortunately isn't written in abstraction level in mind. I mean, it uses DirectX types, objects and D3DX calls all over the code. 

My questions are :

1. What OpenGL version I should implement ? OpenGL 2.x , 3.x, 4.0 ? I need a smooth transition and easy port, that matches Direct3D 9.0 functionality well.

 2. Should I use glew, glut, SDL , other stuff like that ? I will most probably want to port it to other platforms like Linux, Mac ? I don't want to mess with extensions so probably glew will be of help.

3. Should I use nVidia CG shader language in order to use my existing HLSL shader code directly, without rewriting them to GLSL ?

4. Is there a good sample source code, tutorials, articles that show basic deferred rendering with a modern  OpenGL way  ( version 3 ++) ?

5. I'm using D3DX library for common math stuff etc, is there a library for OpenGL that is to it, like D3DX is to Direct3D ?

 

I have a limited OpenGL experience from the past.

 

Thank you.

More questions to come.

Share this post


Link to post
Share on other sites
Hello people.

 

I have a Direct3D 9.0 engine and I want to add an OpenGL renderer.

The engine uses deferred lighting with Shader model 3.0 and unfortunately isn't written in abstraction level in mind. I mean, it uses DirectX types, objects and D3DX calls all over the code. 

My questions are :

1. What OpenGL version I should implement ? OpenGL 2.x , 3.x, 4.0 ? I need a smooth transition and easy port, that matches Direct3D 9.0 functionality well.

 2. Should I use glew, glut, SDL , other stuff like that ? I will most probably want to port it to other platforms like Linux, Mac ? I don't want to mess with extensions so probably glew will be of help.

3. Should I use nVidia CG shader language in order to use my existing HLSL shader code directly, without rewriting them to GLSL ?

4. Is there a good sample source code, tutorials, articles that show basic deferred rendering with a modern  OpenGL way  ( version 3 ++) ?

5. I'm using D3DX library for common math stuff etc, is there a library for OpenGL that is to it, like D3DX is to Direct3D ?

 

I have a limited OpenGL experience from the past.

 

Thank you.

More questions to come.

 

hi,

 

opengl 2.1 matches dx9 functionality.

yes you should use glew and sdl (or sfml, if you prefer c++-ish solutions), but these are not mandatory, you can write your own.

well cg is another language right? so you would have to port to cg then... the question is, do you want to learn glsl or not?

see: http://ogldev.atspace.co.uk/

but there are tons of others. google is your friend.

well for mesh loading and stuff related to that, you have assimp

for texture loading, you can do this with sdl / sfml. Just load in an image using sdl / sfml, acquire the pointer to the raw data, and fill a texture using that data.

for maths, you have tons of choices. The most popular ones are CML (http://cmldev.net) and GLM (http://glm.g-truc.net/).

I have also developed a math library: https://github.com/Yours3lf/libmymath

 

if you need anythin else, just go to the topics (http://www.gamedev.net/forum/25-opengl/) look at the right side of the page -->

and there you have it, tons of links.

Share this post


Link to post
Share on other sites
As OpenGL version a suggest 3.3+ because almoste all modern graphic card support it and is very similar to OpenGL 4.0.
As GUI library you can use the Qt library.
As math library you can use Eigen (very fast with extensive use of Expression Template and SIMD istruction (SSE, AVX, Neon)).
But you have to learn very well GLSL language. OpenGL is a C API and is not easy to write OOP code. Take a look to (http://oglplus.org/) Edited by thelvishow

Share this post


Link to post
Share on other sites
As OpenGL version a suggest 3.3+ because almoste all modern graphic card support it and is very similar to OpenGL 4.0.
Second this.

Although OpenGL 2.1 is the "equivalent" of DX9, there is no good reason not to use OpenGL 3.x for you (but there are good reasons against using OpenGL 2.x).

Since you come from DX9, you will have to learn a new API in any case, so best learn the "correct" version right away. Otherwise, you'll have to spend extra time at some point int the future on unlearning and re-learning. Going from 3.x to 4.x is a breeze, but there is a huge paradigm cut between 2.x and 3.x. Edited by samoth

Share this post


Link to post
Share on other sites

I wouldn't quite consider GL2.1 an equivalent of D3D9 - there are some D3D9 features (particularly at the SM3 level - e.g. instancing) that are not available in GL until 3.x, so that seems the most reasonable level to shoot for (particularly if you're using those features!) and I agree with those above recommending it.

 

Regarding choice of shading language, you're on the right track with Cg.  Cg and HLSL are so similar (they were originally more or less the same language) and share so many concepts that it makes sense.

Share this post


Link to post
Share on other sites
As OpenGL version a suggest 3.3+ because almoste all modern graphic card support it and is very similar to OpenGL 4.0.
As GUI library you can use the Qt library.
As math library you can use Eigen (very fast with extensive use of Expression Template and SIMD istruction (SSE, AVX, Neon)).
But you have to learn very well GLSL language. OpenGL is a C API and is not easy to write OOP code. Take a look to (http://oglplus.org/)

 

GL 3.0+ is still not very widely supported. If you are targeting a casual market, you may want to stick with 2.0 as your target. In this thread it was listed that as few as 51% of Minecraft users supports GL 3.0+. It really comes down to what you need; GL 2 is a fine target for most purposes and can be used in almost the same way as the 3+ programmable pipeline (shaders, custom built-ins, etc). Many drivers will support geometry shaders, FBOs, float textures, etc. through extensions. For example, [url=http://feedback.wildfiregames.com/report/opengl/feature/GL_EXT_framebuffer_object]93%[/url] of drivers support FBO EXT, and it's pretty much a staple in any driver in the last several years. 

 

GL 2.0 and GLSL < 150 is also more compatible with OpenGL ES, so it will prepare you for iOS/Android/WebGL graphics programming.

Share this post


Link to post
Share on other sites
GL 3.0+ is still not very widely supported. If you are targeting a casual market, you may want to stick with 2.0 as your target. In this thread it was listed that as few as 51% of Minecraft users supports GL 3.0+. It really comes down to what you need; GL 2 is a fine target for most purposes and can be used in almost the same way as the 3+ programmable pipeline (shaders, custom built-ins, etc). Many drivers will support geometry shaders, FBOs, float textures, etc. through extensions. For example, 93% of drivers support FBO EXT, and it's pretty much a staple in any driver in the last several years. 

 

GL 2.0 and GLSL < 150 is also more compatible with OpenGL ES, so it will prepare you for iOS/Android/WebGL graphics programming.

 

The OP's engine uses deferred lighting with SM3 so I think we can safely assume that a casual market is not quite the target audience.

Share this post


Link to post
Share on other sites

Thank you guys. (that doesn't mean I intend to put an end to the thread)

 

I'm using shader model 3.0 because I need vertex texture fetch, VPOS in pixel shaders, more complex programs etc.

 

I guess I can't find a simple tutorial for OpenGL 3.3 deferred lighting with sample source code.

The closest I found is one that deals with OpenGL 2.1 , GLSL 1.2

http://www.codinglabs.net/tutorial_simple_def_rendering.aspx

 

DirectX has SDK with samples, I guess OpenGL has one too and there is a deferred lighting sample. Or maybe nVidia developers zone or AMD samples are my friends.

Share this post


Link to post
Share on other sites

One thing to note, if you want it to be sure all hardware that runs DX9 to run your game you need to limit yourself at most to OpenGL 2.0 :(

 

I have several older comps (DX9) that can run at most OpenGL 2.0 or even OpenGL 1.5 (althrough you can drop that ancient ones). It's especially true for laptops (infamous integrated Intel GPU chips).

Sadly, OpenGL (higher versions) is not that supported (drivers, and if the manufacturer never released drivers for OpenGL higher than 2.0 you can't do anything about it).

 

It's really annoying, these comps do have these capabilities, and are only artificially crippled because of lack of proper drivers. Fortunatelly it does not apply to relatively modern hardware, so if you are ready to abandon some of the older ones you should be fine with OpenGL 3+.

Share this post


Link to post
Share on other sites
Thanks again everyone.
Porting is coming along very nice and I'm happy with the results so far, as the OpenGL version runs faster than D3D, probably due to badly written D3D code on my side or the simplicity of GLSL shaders I use for now. Anyway I have another question.
I have entities which transformation is a D3DXMATRIX and I want to use that matrix for my OpenGL version of the renderer.
I did this already with my D3D view matrix, which is a D3DXMATRIX by multiplying it with a (1,1,-1) scaled matrix


D3DXMatrixScaling(&sca,1,1,-1) ; 
 OGLMatrix = g_Camera->view * sca ;
I load this into OpenGL and it works as a MODEL_VIEW matrix which has the MODEL part identity, so all my meshes lie in origin with no scaling and rotation factors, but I can move the camera around correctly.

Now I need to involve the meshes transform matrices from D3D so they are placed, scaled and rotated in the world, but I'm missing something probably because I get incorrect results.
This doesn't seem to work as expected :



D3DXMatrixScaling(&sca,1,1,-1) ;
  for(int i = 0 ; i < pOGLMeshes.size() ; i++ )
   {       
OGLMatrix = pOGLMeshes[i]->d3dMatrix * g_Camera->view * sca ;
g_pOGLRenderer->RenderMesh(pOGLMeshes[i] , &OGLMatrix[0] ) ;
   }
If I have a D3D model and view matrices, how am I supposed to concatenate them correctly, so I can load them in OpenGL as MODELVIEW matrix ?

Thank you. Edited by solenoidz

Share this post


Link to post
Share on other sites

Thanks again everyone.
Porting is coming along very nice and I'm happy with the results so far, as the OpenGL version runs faster than D3D, probably due to badly written D3D code on my side or the simplicity of GLSL shaders I use for now. Anyway I have another question.
I have entities which transformation is a D3DXMATRIX and I want to use that matrix for my OpenGL version of the renderer.
I did this already with my D3D view matrix, which is a D3DXMATRIX by multiplying it with a (1,1,-1) scaled matrix

 

D3DXMatrixScaling(&sca,1,1,-1) ; 
 OGLMatrix = g_Camera->view * sca ;
I load this into OpenGL and it works as a MODEL_VIEW matrix which has the MODEL part identity, so all my meshes lie in origin with no scaling and rotation factors, but I can move the camera around correctly.

Now I need to involve the meshes transform matrices from D3D so they are placed, scaled and rotated in the world, but I'm missing something probably because I get incorrect results.
This doesn't seem to work as expected :



D3DXMatrixScaling(&sca,1,1,-1) ;
  for(int i = 0 ; i < pOGLMeshes.size() ; i++ )
   {       
OGLMatrix = pOGLMeshes[i]->d3dMatrix * g_Camera->view * sca ;
g_pOGLRenderer->RenderMesh(pOGLMeshes[i] , &OGLMatrix[0] ) ;
   }
If I have a D3D model and view matrices, how am I supposed to concatenate them correctly, so I can load them in OpenGL as MODELVIEW matrix ?

Thank you.

d3d:

model * view * projection

ogl:

projection * view * model OR

projection * modelview

 

(reverse order)

This is because OGL uses column major matrices.

http://en.wikipedia.org/wiki/Column-major_order#Column-major_order
related:
http://www.songho.ca/opengl/gl_transform.html

Share this post


Link to post
Share on other sites
d3d:
model * view * projection
ogl:
projection * view * model OR
projection * modelview
 
(reverse order)
This is because OGL uses column major matrices.
http://en.wikipedia.org/wiki/Column-major_order#Column-major_order
related:
http://www.songho.ca/opengl/gl_transform.html
 

D3DX uses row-major storage for it's matrices, but by default HLSL uses column-major storage for it's matrices -- the Microsoft Effects framework handles the conversion from one storage method to the other.
GL/GLSL also use column-major storage.

Also, the choice of whether you store your matrices using column-major storage or row-major storage has no effect on your math. This is only a choice of how your perform your 2D array indexing for storage only (at the lowest level of abstraction -- storing items in linear RAM). At the level of abstraction where you're working with mathematical matrices, both methods should behave the same, no matter how their storage mechanism is implemented -- they're both different ways of storing a matrix, there's no such mathematical thing as a row-major matrix or a column-major matrix, just matrices.

The thing that ends up causing you to reverse your mathematics is actually whether you choose to interpret an n-Dimensional vector as a mathematical row-vector (1*n matrix) or a mathematical column-vector (n*1 matrix). Again, in either case the storage mechanism has no effect, your vectors will likely be stored in row-major order, but you can mathematically interpret those bytes as a row-vector or column-vector.

D3DX (and fixed-function D3D) interpret vectors as row-vectors -- so a Float4 becomes a 1-row by 4-column matrix, and mathematically a 1x4 matrix has to be on the left side of a 4x4 matrix when multiplying, which forces you to use that order in your math.

Fixed-function GL interprets vectors as column-vectors -- a 4-row by 1-column matrix, which mathematically has to be on the right side of a 4x4 matrix.

When writing you HLSL/GLSL code, you can choose to use either convention. Shader-based D3D/GL do not force you to use one convention or the other.

Also, as I touched on before, HLSL and GLSL default to using column-major storage for their matrices (and row-major storage for their vectors), but this is just a storage detail, which doesn't affect your math. You can tell HLSL/GLSL to use either storage mechanism, e.g. by using the row_major keyword in HLSL.

 

http://fgiesen.wordpress.com/2012/02/12/row-major-vs-column-major-row-vectors-vs-column-vectors/

http://www.scratchapixel.com/lessons/3d-basic-lessons/lesson-4-geometry/conventions-again-row-major-vs-column-major-vector/

Share this post


Link to post
Share on other sites

Hodgman is correct here - we're not talking about any inner workings of the APIs here and it's incorrect to say that either API uses X; these are just notational conventions and each API is equally capable of either convention.  See http://www.opengl.org/archives/resources/faq/technical/transformations.htm

 

So the reality is that when doing a porting job you can just use the same convention as before and everything will still work - no need to change anything at all as part of the porting job.

Share this post


Link to post
Share on other sites


1. GL2.x matches DX9, but it's FUGLY. Go with the GL3/GL4 core spec so that you maintain your sanity.

2. GLEW yes. sdl maybe, unless you already have a WIN32 window up and running, in which case just initialise a GL context in place of the D3D swap chain.

3. Whichever is easiest. I'd probably just stick with GLSL myself....

4. Google around. lighthouse3d had some good GL3 tutorials last time I looked.

5. Just use D3DX maths for everything and upload the matrices to the GLSL shaders. The GL version will need you to (globally) scale everything in the Z axis by -1, and you'll also need to reverse the winding order, but otherwise they'll work the same.

Share this post


Link to post
Share on other sites

GL 2.x does in fact match Direct3d 9.0 very well there's just a bunch of legacy stuff in it that can probably be ignored. What I do in my engine is use GL 2.1 but in a very opengl 3.x sort of way that way I can run my engine on OpenGL 2.x hardware but also use a core context on 3.x hardware because I don't use the GL 2 features that were removed in version 3.

 

GLEW is great and I use it everywhere and so is SDL.

Share this post


Link to post
Share on other sites

GL2.1 is missing some very important functionality:

  • There is no reasonable render-to-texture API.  You're stuck with using either pbuffers or glCopyTex(Sub)Image2D - the former of which will cause you to want to gnaw your own arms off, the latter of which works well enough but costs some additional performance.
  • No instancing!  I hope you weren't planning on using instancing in your code.
  • There is no reasonable method of updating dynamic buffer objects; if you have any truly dynamic vertex data you may be as well off using old-school client-side arrays with system-memory pointers.
  • There is no explicit specification of attrib locations or uniform locations in your shaders.  This makes shader management a trifle more annoying than it should be.

All of these are present in D3D9, and while they could be pulled into a GL2.1 codebase via extensions, if you're aiming for full GL2.1 compatibility then you're going to need multiple code paths and you're not really just restricting yourself to GL2.1 anymore, are you?

 

So we're clearly in a position where you need to make a tradeoff - do you really want to be inclusive of those with older hardware (and at this stage note that for AMD/ATI and NV we're not just talking about a year or two here; that leaves Intel integrateds) at a high potential cost to your own productivity?

Share this post


Link to post
Share on other sites
Thanks @mhagain, I needed such a post to compare D3D9 and OpenGL 2.1, as I'm using render to texture, instancing and I'm using dynamic vertex buffers to update my "matrix buffer" used for instancing in D3D.
The reason I'm trying to add OpenGL renderer is to be able to port my applications for Mac and Linux, but more importantly I thought I can make a Web based renderer via WebGL, but I have zero understanding of how a desktop OpenGL simple engine( let's say OGL 2.1) could be ported to WebGL and the user provided with an URL to play applications build with it. Edited by solenoidz

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

Sign in to follow this  

  • Forum Statistics

    • Total Topics
      628277
    • Total Posts
      2981771
  • Similar Content

    • By mellinoe
      Hi all,
      First time poster here, although I've been reading posts here for quite a while. This place has been invaluable for learning graphics programming -- thanks for a great resource!
      Right now, I'm working on a graphics abstraction layer for .NET which supports D3D11, Vulkan, and OpenGL at the moment. I have implemented most of my planned features already, and things are working well. Some remaining features that I am planning are Compute Shaders, and some flavor of read-write shader resources. At the moment, my shaders can just get simple read-only access to a uniform (or constant) buffer, a texture, or a sampler. Unfortunately, I'm having a tough time grasping the distinctions between all of the different kinds of read-write resources that are available. In D3D alone, there seem to be 5 or 6 different kinds of resources with similar but different characteristics. On top of that, I get the impression that some of them are more or less "obsoleted" by the newer kinds, and don't have much of a place in modern code. There seem to be a few pivots:
      The data source/destination (buffer or texture) Read-write or read-only Structured or unstructured (?) Ordered vs unordered (?) These are just my observations based on a lot of MSDN and OpenGL doc reading. For my library, I'm not interested in exposing every possibility to the user -- just trying to find a good "middle-ground" that can be represented cleanly across API's which is good enough for common scenarios.
      Can anyone give a sort of "overview" of the different options, and perhaps compare/contrast the concepts between Direct3D, OpenGL, and Vulkan? I'd also be very interested in hearing how other folks have abstracted these concepts in their libraries.
    • By aejt
      I recently started getting into graphics programming (2nd try, first try was many years ago) and I'm working on a 3d rendering engine which I hope to be able to make a 3D game with sooner or later. I have plenty of C++ experience, but not a lot when it comes to graphics, and while it's definitely going much better this time, I'm having trouble figuring out how assets are usually handled by engines.
      I'm not having trouble with handling the GPU resources, but more so with how the resources should be defined and used in the system (materials, models, etc).
      This is my plan now, I've implemented most of it except for the XML parts and factories and those are the ones I'm not sure of at all:
      I have these classes:
      For GPU resources:
      Geometry: holds and manages everything needed to render a geometry: VAO, VBO, EBO. Texture: holds and manages a texture which is loaded into the GPU. Shader: holds and manages a shader which is loaded into the GPU. For assets relying on GPU resources:
      Material: holds a shader resource, multiple texture resources, as well as uniform settings. Mesh: holds a geometry and a material. Model: holds multiple meshes, possibly in a tree structure to more easily support skinning later on? For handling GPU resources:
      ResourceCache<T>: T can be any resource loaded into the GPU. It owns these resources and only hands out handles to them on request (currently string identifiers are used when requesting handles, but all resources are stored in a vector and each handle only contains resource's index in that vector) Resource<T>: The handles given out from ResourceCache. The handles are reference counted and to get the underlying resource you simply deference like with pointers (*handle).  
      And my plan is to define everything into these XML documents to abstract away files:
      Resources.xml for ref-counted GPU resources (geometry, shaders, textures) Resources are assigned names/ids and resource files, and possibly some attributes (what vertex attributes does this geometry have? what vertex attributes does this shader expect? what uniforms does this shader use? and so on) Are reference counted using ResourceCache<T> Assets.xml for assets using the GPU resources (materials, meshes, models) Assets are not reference counted, but they hold handles to ref-counted resources. References the resources defined in Resources.xml by names/ids. The XMLs are loaded into some structure in memory which is then used for loading the resources/assets using factory classes:
      Factory classes for resources:
      For example, a texture factory could contain the texture definitions from the XML containing data about textures in the game, as well as a cache containing all loaded textures. This means it has mappings from each name/id to a file and when asked to load a texture with a name/id, it can look up its path and use a "BinaryLoader" to either load the file and create the resource directly, or asynchronously load the file's data into a queue which then can be read from later to create the resources synchronously in the GL context. These factories only return handles.
      Factory classes for assets:
      Much like for resources, these classes contain the definitions for the assets they can load. For example, with the definition the MaterialFactory will know which shader, textures and possibly uniform a certain material has, and with the help of TextureFactory and ShaderFactory, it can retrieve handles to the resources it needs (Shader + Textures), setup itself from XML data (uniform values), and return a created instance of requested material. These factories return actual instances, not handles (but the instances contain handles).
       
       
      Is this a good or commonly used approach? Is this going to bite me in the ass later on? Are there other more preferable approaches? Is this outside of the scope of a 3d renderer and should be on the engine side? I'd love to receive and kind of advice or suggestions!
      Thanks!
    • By nedondev
      I 'm learning how to create game by using opengl with c/c++ coding, so here is my fist game. In video description also have game contain in Dropbox. May be I will make it better in future.
      Thanks.
    • By Abecederia
      So I've recently started learning some GLSL and now I'm toying with a POM shader. I'm trying to optimize it and notice that it starts having issues at high texture sizes, especially with self-shadowing.
      Now I know POM is expensive either way, but would pulling the heightmap out of the normalmap alpha channel and in it's own 8bit texture make doing all those dozens of texture fetches more cheap? Or is everything in the cache aligned to 32bit anyway? I haven't implemented texture compression yet, I think that would help? But regardless, should there be a performance boost from decoupling the heightmap? I could also keep it in a lower resolution than the normalmap if that would improve performance.
      Any help is much appreciated, please keep in mind I'm somewhat of a newbie. Thanks!
    • By test opty
      Hi,
      I'm trying to learn OpenGL through a website and have proceeded until this page of it. The output is a simple triangle. The problem is the complexity.
      I have read that page several times and tried to analyse the code but I haven't understood the code properly and completely yet. This is the code:
       
      #include <glad/glad.h> #include <GLFW/glfw3.h> #include <C:\Users\Abbasi\Desktop\std_lib_facilities_4.h> using namespace std; //****************************************************************************** void framebuffer_size_callback(GLFWwindow* window, int width, int height); void processInput(GLFWwindow *window); // settings const unsigned int SCR_WIDTH = 800; const unsigned int SCR_HEIGHT = 600; const char *vertexShaderSource = "#version 330 core\n" "layout (location = 0) in vec3 aPos;\n" "void main()\n" "{\n" " gl_Position = vec4(aPos.x, aPos.y, aPos.z, 1.0);\n" "}\0"; const char *fragmentShaderSource = "#version 330 core\n" "out vec4 FragColor;\n" "void main()\n" "{\n" " FragColor = vec4(1.0f, 0.5f, 0.2f, 1.0f);\n" "}\n\0"; //******************************* int main() { // glfw: initialize and configure // ------------------------------ glfwInit(); glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3); glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3); glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE); // glfw window creation GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "My First Triangle", nullptr, nullptr); if (window == nullptr) { cout << "Failed to create GLFW window" << endl; glfwTerminate(); return -1; } glfwMakeContextCurrent(window); glfwSetFramebufferSizeCallback(window, framebuffer_size_callback); // glad: load all OpenGL function pointers if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress)) { cout << "Failed to initialize GLAD" << endl; return -1; } // build and compile our shader program // vertex shader int vertexShader = glCreateShader(GL_VERTEX_SHADER); glShaderSource(vertexShader, 1, &vertexShaderSource, nullptr); glCompileShader(vertexShader); // check for shader compile errors int success; char infoLog[512]; glGetShaderiv(vertexShader, GL_COMPILE_STATUS, &success); if (!success) { glGetShaderInfoLog(vertexShader, 512, nullptr, infoLog); cout << "ERROR::SHADER::VERTEX::COMPILATION_FAILED\n" << infoLog << endl; } // fragment shader int fragmentShader = glCreateShader(GL_FRAGMENT_SHADER); glShaderSource(fragmentShader, 1, &fragmentShaderSource, nullptr); glCompileShader(fragmentShader); // check for shader compile errors glGetShaderiv(fragmentShader, GL_COMPILE_STATUS, &success); if (!success) { glGetShaderInfoLog(fragmentShader, 512, nullptr, infoLog); cout << "ERROR::SHADER::FRAGMENT::COMPILATION_FAILED\n" << infoLog << endl; } // link shaders int shaderProgram = glCreateProgram(); glAttachShader(shaderProgram, vertexShader); glAttachShader(shaderProgram, fragmentShader); glLinkProgram(shaderProgram); // check for linking errors glGetProgramiv(shaderProgram, GL_LINK_STATUS, &success); if (!success) { glGetProgramInfoLog(shaderProgram, 512, nullptr, infoLog); cout << "ERROR::SHADER::PROGRAM::LINKING_FAILED\n" << infoLog << endl; } glDeleteShader(vertexShader); glDeleteShader(fragmentShader); // set up vertex data (and buffer(s)) and configure vertex attributes float vertices[] = { -0.5f, -0.5f, 0.0f, // left 0.5f, -0.5f, 0.0f, // right 0.0f, 0.5f, 0.0f // top }; unsigned int VBO, VAO; glGenVertexArrays(1, &VAO); glGenBuffers(1, &VBO); // bind the Vertex Array Object first, then bind and set vertex buffer(s), //and then configure vertex attributes(s). glBindVertexArray(VAO); glBindBuffer(GL_ARRAY_BUFFER, VBO); glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW); glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void*)0); glEnableVertexAttribArray(0); // note that this is allowed, the call to glVertexAttribPointer registered VBO // as the vertex attribute's bound vertex buffer object so afterwards we can safely unbind glBindBuffer(GL_ARRAY_BUFFER, 0); // You can unbind the VAO afterwards so other VAO calls won't accidentally // modify this VAO, but this rarely happens. Modifying other // VAOs requires a call to glBindVertexArray anyways so we generally don't unbind // VAOs (nor VBOs) when it's not directly necessary. glBindVertexArray(0); // uncomment this call to draw in wireframe polygons. //glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); // render loop while (!glfwWindowShouldClose(window)) { // input // ----- processInput(window); // render // ------ glClearColor(0.2f, 0.3f, 0.3f, 1.0f); glClear(GL_COLOR_BUFFER_BIT); // draw our first triangle glUseProgram(shaderProgram); glBindVertexArray(VAO); // seeing as we only have a single VAO there's no need to // bind it every time, but we'll do so to keep things a bit more organized glDrawArrays(GL_TRIANGLES, 0, 3); // glBindVertexArray(0); // no need to unbind it every time // glfw: swap buffers and poll IO events (keys pressed/released, mouse moved etc.) glfwSwapBuffers(window); glfwPollEvents(); } // optional: de-allocate all resources once they've outlived their purpose: glDeleteVertexArrays(1, &VAO); glDeleteBuffers(1, &VBO); // glfw: terminate, clearing all previously allocated GLFW resources. glfwTerminate(); return 0; } //************************************************** // process all input: query GLFW whether relevant keys are pressed/released // this frame and react accordingly void processInput(GLFWwindow *window) { if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS) glfwSetWindowShouldClose(window, true); } //******************************************************************** // glfw: whenever the window size changed (by OS or user resize) this callback function executes void framebuffer_size_callback(GLFWwindow* window, int width, int height) { // make sure the viewport matches the new window dimensions; note that width and // height will be significantly larger than specified on retina displays. glViewport(0, 0, width, height); } As you see, about 200 lines of complicated code only for a simple triangle. 
      I don't know what parts are necessary for that output. And also, what the correct order of instructions for such an output or programs is, generally. That start point is too complex for a beginner of OpenGL like me and I don't know how to make the issue solved. What are your ideas please? What is the way to figure both the code and the whole program out correctly please?
      I wish I'd read a reference that would teach me OpenGL through a step-by-step method. 
  • Popular Now