• Announcements

    • khawk

      Download the Game Design and Indie Game Marketing Freebook   07/19/17

      GameDev.net and CRC Press have teamed up to bring a free ebook of content curated from top titles published by CRC Press. The freebook, Practices of Game Design & Indie Game Marketing, includes chapters from The Art of Game Design: A Book of Lenses, A Practical Guide to Indie Game Marketing, and An Architectural Approach to Level Design. The GameDev.net FreeBook is relevant to game designers, developers, and those interested in learning more about the challenges in game development. We know game development can be a tough discipline and business, so we picked several chapters from CRC Press titles that we thought would be of interest to you, the GameDev.net audience, in your journey to design, develop, and market your next game. The free ebook is available through CRC Press by clicking here. The Curated Books The Art of Game Design: A Book of Lenses, Second Edition, by Jesse Schell Presents 100+ sets of questions, or different lenses, for viewing a game’s design, encompassing diverse fields such as psychology, architecture, music, film, software engineering, theme park design, mathematics, anthropology, and more. Written by one of the world's top game designers, this book describes the deepest and most fundamental principles of game design, demonstrating how tactics used in board, card, and athletic games also work in video games. It provides practical instruction on creating world-class games that will be played again and again. View it here. A Practical Guide to Indie Game Marketing, by Joel Dreskin Marketing is an essential but too frequently overlooked or minimized component of the release plan for indie games. A Practical Guide to Indie Game Marketing provides you with the tools needed to build visibility and sell your indie games. With special focus on those developers with small budgets and limited staff and resources, this book is packed with tangible recommendations and techniques that you can put to use immediately. As a seasoned professional of the indie game arena, author Joel Dreskin gives you insight into practical, real-world experiences of marketing numerous successful games and also provides stories of the failures. View it here. An Architectural Approach to Level Design This is one of the first books to integrate architectural and spatial design theory with the field of level design. The book presents architectural techniques and theories for level designers to use in their own work. It connects architecture and level design in different ways that address the practical elements of how designers construct space and the experiential elements of how and why humans interact with this space. Throughout the text, readers learn skills for spatial layout, evoking emotion through gamespaces, and creating better levels through architectural theory. View it here. Learn more and download the ebook by clicking here. Did you know? GameDev.net and CRC Press also recently teamed up to bring GDNet+ Members up to a 20% discount on all CRC Press books. Learn more about this and other benefits here.
Sign in to follow this  
Followers 0
mrheisenberg

OpenGL
Is Clustered Forward Shading worth implementing?

46 posts in this topic

One thing I like about the tiled Clustered is that it become "cheaper" to handle transparent object. In the case of tiled deferred you have to build 2 lists, one that used the depth buffer for the light culling and one without. So yo can have a massive overhead on the transparent pass. With clustered 1 culling is necessary.

 

But again that depend of the light count (also clustered is a heavier in term of memory size if I'm correct) and the scene.

 

Also at the Siggraph Asia , they were a presentation about a 2.5D culling techinque that you can find here : https://sites.google.com/site/takahiroharada/

2

Share this post


Link to post
Share on other sites

the Z-prepass worries me,does that mean I have to do the tessellation twice as well?(tessellation already hits my FPS big time)

Edited by mrheisenberg
2

Share this post


Link to post
Share on other sites
deferred shading is really unhandy when it comes to anti aliasing and lighting transparent objects is not solved in this approach.

forward shading is the way to go, I expect in the next generation consoles to go back to it. I use a similar approach on my phone engines, I've a view space aligned 3d grid (texture) that has a 'count' and 'offset' value per voxel, that I use to index into a texture containing the light sources that affect that voxel. the grid creation is done every frame on CPU, I don't have 30k of lights, but I run with antialiasing, I use the same shader for solid and transparent objects, very convenient to use, I can even assign this texture on the vertexshader for lighting particles in a cheap way.

 

one problem you still have is to apply shadows/projectors, it's solveable by having an atlas and store more data per lightsource (projection matrix, offsets,extends etc), but it makes quite a lot of overhead.

 

Many have solved transparency with deferred, Epic and Avalanche among them. Anti Aliasing is also doable. Multiple BRDF's are handled straightforward in deferred. You also have direct access to all those buffers should you need anything, and don't have to worry about processing and pixels you can't see it. And most modern hardware, including the 4th Gen Ipad and Tegra 4 from what I've heard, have enough bandwidth and memory to get some sort of deferred done, though if you're doing thousand and thousands of lights mobile probably isn't your target platform anyway.

 

I'd rather make sure there's not any unnecessary shading going on. Of course you can't do 8xMSAA with deferred, at least not cheaply, but you can do something like SMAA, which looks just as good and is cheaper in any case. I suppose it's all based on what you'd like to be doing. If you've got the time for it, and are on the right platform (new consoles, high end pc stuff) then I don't see any reason not to go deferred. If you don't have the time to solve all those problems, or somethings I'm probably not even thinking of, then forward might be your solution. But calling out all the old problems with deferred isn't relevant, as they've been solved for most part.

0

Share this post


Link to post
Share on other sites
Many have solved transparency with deferred, Epic and Avalanche among them. Anti Aliasing is also doable. Multiple BRDF's are handled straightforward in deferred. You also have direct access to all those buffers should you need anything, and don't have to worry about processing and pixels you can't see it. And most modern hardware, including the 4th Gen Ipad and Tegra 4 from what I've heard, have enough bandwidth and memory to get some sort of deferred done, though if you're doing thousand and thousands of lights mobile probably isn't your target platform anyway.

I don't remember Avalanche using Deferred Shading in it's titles. Which titles do use it?

 

Handling transparency... nice way of saying "solved". Switching to forward is not a "solution", neither is using lighting accumulative aproaches. It's a workaround. Anti aliasing is doable, but at a gigantic cost. I'm talking about MSAA and CSAA (SSAA is always expensive). Not about "FXAA" & Co. which is a cheap trick.

As for multiple BRDFs, it's not straightforward in deferred. It needs an extra cost in the MRT to store material ID, and you either use branching in your code and pray for high branch coherency (low frequency image) to get the best BRDFs (Cook Torrance, Oren Nayar, Phong, Blinn Phong, Strauss, etc) at decent speed, or resort to texture array approaches (which produce very interesting/creative results that I love, but aren't optimal for those seeking photorealism).

 

So, no, I wouldn't call the old deferred problems as "solved".

0

Share this post


Link to post
Share on other sites

the reason a lot of games went deferred is that it's not possible on current consoles to go forward. dynamic branching etc. would just kill you, and you don't really have benefits of it as most games are not rendering insane AA resolutions. that might change on future gen, they'll probably be very alike to PCs and there you don't worry about branching, but you want to support high AA resolutions without paying the cost of shading every sub sample.

 

so the question whether you go deferred or forward is also very much dependent on what your hardware has to offer (beside the question of what you're trying to achive).

1

Share this post


Link to post
Share on other sites

the reason a lot of games went deferred is that it's not possible on current consoles to go forward.

Many current-gen console games are forward, and forward has stuck around because it's very hard to go deferred on current-gen consoles... The amount of bandwidth required kills you. Even 16-bit HDR (64bpp) is a huge burden on these consoles.

the more advanced games are, the more likely they become deferred, the reason is that it's not possible to get the amount of light-surface interactions with forward rendering in a fast way. as you said, it would seem deferred is more demanding, yet it's the only way to go if you want flexibility.

1

Share this post


Link to post
Share on other sites
A little off topic but still on topic, does anyone have any links to good tutorials on deferred vs forward rendering? I've read a fair bit about the detail on deferred but would rather get a good grounding on it before look into it further - couldn't find any decent sites with 'why deferred' other than 'you can have more lights'.

Apologies for borrowing this thread quickly...
1

Share this post


Link to post
Share on other sites
Not really; deferred might have solved some problems with regards to lights but it brought with it a whole host of others with regards to memory bandwidth, AA issues, problems integrating different BRDFs, transparency and other issues which required various hoops to be jumped through.

exactly, one would think, having no MSAA (for shading), no solution for alphablend, problems with getting different BRDFs running, high memory storage and bandwidth cost, why on earth would anyone do that.

simply because the current gen console hardware does not offer another solution to create worlds that player, designer and artist expect, where you have tons of dynamic lights, where even particles light the close-by geometry.

1

Share this post


Link to post
Share on other sites
A little off topic but still on topic, does anyone have any links to good tutorials on deferred vs forward rendering? I've read a fair bit about the detail on deferred but would rather get a good grounding on it before look into it further - couldn't find any decent sites with 'why deferred' other than 'you can have more lights'.

Apologies for borrowing this thread quickly...

I think that's a good start:

http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter09.html

2

Share this post


Link to post
Share on other sites
A little off topic but still on topic, does anyone have any links to good tutorials on deferred vs forward rendering? I've read a fair bit about the detail on deferred but would rather get a good grounding on it before look into it further - couldn't find any decent sites with 'why deferred' other than 'you can have more lights'.

Apologies for borrowing this thread quickly...

I think that's a good start:

http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter09.html

 

That link just reinforces his belief that 'why deferred' is just 'you can have more lights'.

Effectively, that's the main reason it appeared, and that's the main reason it's still strong.

 

There are other side effects that are good:

  1. The GBuffer data can be very useful for screen space effects (i.e. Normals can be used for AO, refraction mapping, and local reflections, depth can be used for Godrays, fog, and DOF). Even if you do you forward rendering, you'll probably end up spitting a sort of GBuffer for those FXs. Of course, you don't have to do magic to compress a lot of parameters into the MRT that you won't be needing in the postprocessing passes (like specular colour term).
  2. Shading complexity becomes screen-dependant. This benefit/disadvantage (depending on the application) is shared with Forward+. Assuming just one directional light is used, every pixel is shaded once. In a forward renderer, if you render everything back to front, every pixel covered by a triangle will be shaded multiple times. Hence deferred shader's time will be fixed and depends on screen resolution (hence lower screen res. is an instant win for low end users). A deferred shader/Forward+ cannot shade more than (num_lights * width * height) pixels even if there are an infinite amount of triangles, whereas the Forward renderer may shade the same pixel an infinite number of times for an infinite amount of triangles, overwriting it's previous value. Of course if you're very good at sorting your triangles (chances are the game cannot be that good) Forward renderer may perform faster; but in a Deferred Shader you're on more stable grounds.

Edit: As for the "more lights" argument, take in mind that a deferred shader can easily take 5000 lights (as long as they're small) while a forward renderer can max at 8-16 lights per object.

Edited by Matias Goldberg
2

Share this post


Link to post
Share on other sites
Very insightful guys, thanks. My renderer is nicely abstracted so I might give it a go. My game only requires one directional light at the moment but I still see the plus with effects like AO, etc

Anyone know which method the call of duty engines use?
0

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!


Register a new account

Sign in

Already have an account? Sign in here.


Sign In Now
Sign in to follow this  
Followers 0

  • Similar Content

    • By DaniDesu
      #include "MyEngine.h" int main() { MyEngine myEngine; myEngine.run(); return 0; } MyEngine.h
      #pragma once #include "MyWindow.h" #include "MyShaders.h" #include "MyShapes.h" class MyEngine { private: GLFWwindow * myWindowHandle; MyWindow * myWindow; public: MyEngine(); ~MyEngine(); void run(); }; MyEngine.cpp
      #include "MyEngine.h" MyEngine::MyEngine() { MyWindow myWindow(800, 600, "My Game Engine"); this->myWindow = &myWindow; myWindow.createWindow(); this->myWindowHandle = myWindow.getWindowHandle(); // Load all OpenGL function pointers for use gladLoadGLLoader((GLADloadproc)glfwGetProcAddress); } MyEngine::~MyEngine() { this->myWindow->destroyWindow(); } void MyEngine::run() { MyShaders myShaders("VertexShader.glsl", "FragmentShader.glsl"); MyShapes myShapes; GLuint vertexArrayObjectHandle; float coordinates[] = { 0.5f, 0.5f, 0.0f, 0.5f, -0.5f, 0.0f, -0.5f, 0.5f, 0.0f }; vertexArrayObjectHandle = myShapes.drawTriangle(coordinates); while (!glfwWindowShouldClose(this->myWindowHandle)) { glClearColor(0.5f, 0.5f, 0.5f, 1.0f); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Draw something glUseProgram(myShaders.getShaderProgram()); glBindVertexArray(vertexArrayObjectHandle); glDrawArrays(GL_TRIANGLES, 0, 3); glfwSwapBuffers(this->myWindowHandle); glfwPollEvents(); } } MyShaders.h
      #pragma once #include <glad\glad.h> #include <GLFW\glfw3.h> #include "MyFileHandler.h" class MyShaders { private: const char * vertexShaderFileName; const char * fragmentShaderFileName; const char * vertexShaderCode; const char * fragmentShaderCode; GLuint vertexShaderHandle; GLuint fragmentShaderHandle; GLuint shaderProgram; void compileShaders(); public: MyShaders(const char * vertexShaderFileName, const char * fragmentShaderFileName); ~MyShaders(); GLuint getShaderProgram(); const char * getVertexShaderCode(); const char * getFragmentShaderCode(); }; MyShaders.cpp
      #include "MyShaders.h" MyShaders::MyShaders(const char * vertexShaderFileName, const char * fragmentShaderFileName) { this->vertexShaderFileName = vertexShaderFileName; this->fragmentShaderFileName = fragmentShaderFileName; // Load shaders from files MyFileHandler myVertexShaderFileHandler(this->vertexShaderFileName); this->vertexShaderCode = myVertexShaderFileHandler.readFile(); MyFileHandler myFragmentShaderFileHandler(this->fragmentShaderFileName); this->fragmentShaderCode = myFragmentShaderFileHandler.readFile(); // Compile shaders this->compileShaders(); } MyShaders::~MyShaders() { } void MyShaders::compileShaders() { this->vertexShaderHandle = glCreateShader(GL_VERTEX_SHADER); this->fragmentShaderHandle = glCreateShader(GL_FRAGMENT_SHADER); glShaderSource(this->vertexShaderHandle, 1, &(this->vertexShaderCode), NULL); glShaderSource(this->fragmentShaderHandle, 1, &(this->fragmentShaderCode), NULL); glCompileShader(this->vertexShaderHandle); glCompileShader(this->fragmentShaderHandle); this->shaderProgram = glCreateProgram(); glAttachShader(this->shaderProgram, this->vertexShaderHandle); glAttachShader(this->shaderProgram, this->fragmentShaderHandle); glLinkProgram(this->shaderProgram); return; } GLuint MyShaders::getShaderProgram() { return this->shaderProgram; } const char * MyShaders::getVertexShaderCode() { return this->vertexShaderCode; } const char * MyShaders::getFragmentShaderCode() { return this->fragmentShaderCode; } MyWindow.h
      #pragma once #include <glad\glad.h> #include <GLFW\glfw3.h> class MyWindow { private: GLFWwindow * windowHandle; int windowWidth; int windowHeight; const char * windowTitle; public: MyWindow(int windowWidth, int windowHeight, const char * windowTitle); ~MyWindow(); GLFWwindow * getWindowHandle(); void createWindow(); void MyWindow::destroyWindow(); }; MyWindow.cpp
      #include "MyWindow.h" MyWindow::MyWindow(int windowWidth, int windowHeight, const char * windowTitle) { this->windowHandle = NULL; this->windowWidth = windowWidth; this->windowWidth = windowWidth; this->windowHeight = windowHeight; this->windowTitle = windowTitle; glfwInit(); } MyWindow::~MyWindow() { } GLFWwindow * MyWindow::getWindowHandle() { return this->windowHandle; } void MyWindow::createWindow() { // Use OpenGL 3.3 and GLSL 3.3 glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3); glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3); // Limit backwards compatibility glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE); glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE); // Prevent resizing window glfwWindowHint(GLFW_RESIZABLE, GL_FALSE); // Create window this->windowHandle = glfwCreateWindow(this->windowWidth, this->windowHeight, this->windowTitle, NULL, NULL); glfwMakeContextCurrent(this->windowHandle); } void MyWindow::destroyWindow() { glfwTerminate(); } MyShapes.h
      #pragma once #include <glad\glad.h> #include <GLFW\glfw3.h> class MyShapes { public: MyShapes(); ~MyShapes(); GLuint & drawTriangle(float coordinates[]); }; MyShapes.cpp
      #include "MyShapes.h" MyShapes::MyShapes() { } MyShapes::~MyShapes() { } GLuint & MyShapes::drawTriangle(float coordinates[]) { GLuint vertexBufferObject{}; GLuint vertexArrayObject{}; // Create a VAO glGenVertexArrays(1, &vertexArrayObject); glBindVertexArray(vertexArrayObject); // Send vertices to the GPU glGenBuffers(1, &vertexBufferObject); glBindBuffer(GL_ARRAY_BUFFER, vertexBufferObject); glBufferData(GL_ARRAY_BUFFER, sizeof(coordinates), coordinates, GL_STATIC_DRAW); // Dertermine the interpretation of the array buffer glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3*sizeof(float), (void *)0); glEnableVertexAttribArray(0); // Unbind the buffers glBindBuffer(GL_ARRAY_BUFFER, 0); glBindVertexArray(0); return vertexArrayObject; } MyFileHandler.h
      #pragma once #include <cstdio> #include <cstdlib> class MyFileHandler { private: const char * fileName; unsigned long fileSize; void setFileSize(); public: MyFileHandler(const char * fileName); ~MyFileHandler(); unsigned long getFileSize(); const char * readFile(); }; MyFileHandler.cpp
      #include "MyFileHandler.h" MyFileHandler::MyFileHandler(const char * fileName) { this->fileName = fileName; this->setFileSize(); } MyFileHandler::~MyFileHandler() { } void MyFileHandler::setFileSize() { FILE * fileHandle = NULL; fopen_s(&fileHandle, this->fileName, "rb"); fseek(fileHandle, 0L, SEEK_END); this->fileSize = ftell(fileHandle); rewind(fileHandle); fclose(fileHandle); return; } unsigned long MyFileHandler::getFileSize() { return (this->fileSize); } const char * MyFileHandler::readFile() { char * buffer = (char *)malloc((this->fileSize)+1); FILE * fileHandle = NULL; fopen_s(&fileHandle, this->fileName, "rb"); fread(buffer, this->fileSize, sizeof(char), fileHandle); fclose(fileHandle); buffer[this->fileSize] = '\0'; return buffer; } VertexShader.glsl
      #version 330 core layout (location = 0) vec3 VertexPositions; void main() { gl_Position = vec4(VertexPositions, 1.0f); } FragmentShader.glsl
      #version 330 core out vec4 FragmentColor; void main() { FragmentColor = vec4(1.0f, 0.0f, 0.0f, 1.0f); } I am attempting to create a simple engine/graphics utility using some object-oriented paradigms. My first goal is to get some output from my engine, namely, a simple red triangle.
      For this goal, the MyShapes class will be responsible for defining shapes such as triangles, polygons etc. Currently, there is only a drawTriangle() method implemented, because I first wanted to see whether it works or not before attempting to code other shape drawing methods.
      The constructor of the MyEngine class creates a GLFW window (GLAD is also initialized here to load all OpenGL functionality), and the myEngine.run() method in Main.cpp is responsible for firing up the engine. In this run() method, the shaders get loaded from files via the help of my FileHandler class. The vertices for the triangle are processed by the myShapes.drawTriangle() method where a vertex array object, a vertex buffer object and vertrex attributes are set for this purpose.
      The while loop in the run() method should be outputting me the desired red triangle, but all I get is a grey window area. Why?
      Note: The shaders are compiling and linking without any errors.
      (Note: I am aware that this code is not using any good software engineering practices (e.g. exceptions, error handling). I am planning to implement them later, once I get the hang of OpenGL.)

       
    • By KarimIO
      EDIT: I thought this was restricted to Attribute-Created GL contexts, but it isn't, so I rewrote the post.
      Hey guys, whenever I call SwapBuffers(hDC), I get a crash, and I get a "Too many posts were made to a semaphore." from Windows as I call SwapBuffers. What could be the cause of this?
      Update: No crash occurs if I don't draw, just clear and swap.
      static PIXELFORMATDESCRIPTOR pfd = // pfd Tells Windows How We Want Things To Be { sizeof(PIXELFORMATDESCRIPTOR), // Size Of This Pixel Format Descriptor 1, // Version Number PFD_DRAW_TO_WINDOW | // Format Must Support Window PFD_SUPPORT_OPENGL | // Format Must Support OpenGL PFD_DOUBLEBUFFER, // Must Support Double Buffering PFD_TYPE_RGBA, // Request An RGBA Format 32, // Select Our Color Depth 0, 0, 0, 0, 0, 0, // Color Bits Ignored 0, // No Alpha Buffer 0, // Shift Bit Ignored 0, // No Accumulation Buffer 0, 0, 0, 0, // Accumulation Bits Ignored 24, // 24Bit Z-Buffer (Depth Buffer) 0, // No Stencil Buffer 0, // No Auxiliary Buffer PFD_MAIN_PLANE, // Main Drawing Layer 0, // Reserved 0, 0, 0 // Layer Masks Ignored }; if (!(hDC = GetDC(windowHandle))) return false; unsigned int PixelFormat; if (!(PixelFormat = ChoosePixelFormat(hDC, &pfd))) return false; if (!SetPixelFormat(hDC, PixelFormat, &pfd)) return false; hRC = wglCreateContext(hDC); if (!hRC) { std::cout << "wglCreateContext Failed!\n"; return false; } if (wglMakeCurrent(hDC, hRC) == NULL) { std::cout << "Make Context Current Second Failed!\n"; return false; } ... // OGL Buffer Initialization glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT); glBindVertexArray(vao); glUseProgram(myprogram); glDrawElements(GL_TRIANGLES, indexCount, GL_UNSIGNED_SHORT, (void *)indexStart); SwapBuffers(GetDC(window_handle));  
    • By Tchom
      Hey devs!
       
      I've been working on a OpenGL ES 2.0 android engine and I have begun implementing some simple (point) lighting. I had something fairly simple working, so I tried to get fancy and added color-tinting light. And it works great... with only one or two lights. Any more than that, the application drops about 15 frames per light added (my ideal is at least 4 or 5). I know implementing lighting is expensive, I just didn't think it was that expensive. I'm fairly new to the world of OpenGL and GLSL, so there is a good chance I've written some crappy shader code. If anyone had any feedback or tips on how I can optimize this code, please let me know.
       
      Vertex Shader
      uniform mat4 u_MVPMatrix; uniform mat4 u_MVMatrix; attribute vec4 a_Position; attribute vec3 a_Normal; attribute vec2 a_TexCoordinate; varying vec3 v_Position; varying vec3 v_Normal; varying vec2 v_TexCoordinate; void main() { v_Position = vec3(u_MVMatrix * a_Position); v_TexCoordinate = a_TexCoordinate; v_Normal = vec3(u_MVMatrix * vec4(a_Normal, 0.0)); gl_Position = u_MVPMatrix * a_Position; } Fragment Shader
      precision mediump float; uniform vec4 u_LightPos["+numLights+"]; uniform vec4 u_LightColours["+numLights+"]; uniform float u_LightPower["+numLights+"]; uniform sampler2D u_Texture; varying vec3 v_Position; varying vec3 v_Normal; varying vec2 v_TexCoordinate; void main() { gl_FragColor = (texture2D(u_Texture, v_TexCoordinate)); float diffuse = 0.0; vec4 colourSum = vec4(1.0); for (int i = 0; i < "+numLights+"; i++) { vec3 toPointLight = vec3(u_LightPos[i]); float distance = length(toPointLight - v_Position); vec3 lightVector = normalize(toPointLight - v_Position); float diffuseDiff = 0.0; // The diffuse difference contributed from current light diffuseDiff = max(dot(v_Normal, lightVector), 0.0); diffuseDiff = diffuseDiff * (1.0 / (1.0 + ((1.0-u_LightPower[i])* distance * distance))); //Determine attenuatio diffuse += diffuseDiff; gl_FragColor.rgb *= vec3(1.0) / ((vec3(1.0) + ((vec3(1.0) - vec3(u_LightColours[i]))*diffuseDiff))); //The expensive part } diffuse += 0.1; //Add ambient light gl_FragColor.rgb *= diffuse; } Am I making any rookie mistakes? Or am I just being unrealistic about what I can do? Thanks in advance
    • By yahiko00
      Hi,
      Not sure to post at the right place, if not, please forgive me...
      For a game project I am working on, I would like to implement a 2D starfield as a background.
      I do not want to deal with static tiles, since I plan to slowly animate the starfield. So, I am trying to figure out how to generate a random starfield for the entire map.
      I feel that using a uniform distribution for the stars will not do the trick. Instead I would like something similar to the screenshot below, taken from the game Star Wars: Empire At War (all credits to Lucasfilm, Disney, and so on...).

      Is there someone who could have an idea of a distribution which could result in such a starfield?
      Any insight would be appreciated
    • By afraidofdark
      I have just noticed that, in quake 3 and half - life, dynamic models are effected from light map. For example in dark areas, gun that player holds seems darker. How did they achieve this effect ? I can use image based lighting techniques however (Like placing an environment probe and using it for reflections and ambient lighting), this tech wasn't used in games back then, so there must be a simpler method to do this.
      Here is a link that shows how modern engines does it. Indirect Lighting Cache It would be nice if you know a paper that explains this technique. Can I apply this to quake 3' s light map generator and bsp format ?
  • Popular Now