• Advertisement
Sign in to follow this  

OpenGL Does Microsoft purposely slow down OpenGL?

This topic is 1833 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

If you intended to correct an error in the post then please contact us.

Recommended Posts

The sad thing though is that apparently Valve was just using a Direct3D wrapper (ala Wine). Ouch if this is the case, that'd mean emulated Direct3D is faster than Direct3D itself...

 

Reading that I get the impression they were using their own translation layer rather than an external one such as WINE which makes sense as it'll have a much lower code cost than trying to effectively rewrite the renderer so that it can natively target both platforms.

 

The problem with trying to draw any conclusions from all this is that there is still a frustrating lack of details on system performance over all; L4D is hardly the most demanding of games (as evidenced by the frame rate) but I'd like to know the overall system load from this multi-threaded approach, how many cores is it using (and indeed memory) compared to the D3D version as that would impact other games with more demanding resource requirements.

(It also remains a D3D9 spec'd engine; everyone else is running off into D3D11 land, heck it's been 18months since we killed support for D3D9 in our engine at work, so seeing a more modern D3D11-style engine tested in this manner would also be nice.)

 

Don't get me wrong, this is good work when all is said and done BUT the lack of some details is bothersome to me as it prevents detailed analysis of just what is going on.

Share this post


Link to post
Share on other sites
Advertisement

Honestly, it'd be wrong to even use the results they got as a comparison when the proper way to use OpenGL would be to rewrite the code from scratch rather than faking Direct3D, and some engines already had their own OpenGL pipelines since the beginning. Also you have to take into account the hardware they used... pretty sure OpenGL suffers a lot on AMD hardware (they don't care as much about it). For a proper test usually you use a wide range of hardware. They never said which versions of the APIs they used, either =P Direct3D 9 should only be compared to OpenGL 2.1, if they used OpenGL 3.x or 4.x the comparison probably isn't proper (since that'd be akin to D3D10 and D3D11, respectively - at least in theory...).

 

Also L4D may not be one of the most demanding games but the framerate is in the low hundreds (at least during that test)...

Share this post


Link to post
Share on other sites

The slides say;

- D3D9-like API with extensions and only shader model 2.0b, which implies a GL2 context

 

Also the framerate, post optimisation work, is ~300 which is very low demand work load both CPU and GPU wise as they can turn out a frame every 3.3ms or so; I'd call that the very definition of not demanding ;)

Share this post


Link to post
Share on other sites

It's important to look at the development process of Valve's port.

 

Their initial working implementation actually ran at 6 FPS - that's not a case of "ZOMG!  OpenGL Is teh slower than D3D!" - that's (as they note) "typical of an initial successful port to a new platform".

 

Following that they identified 3 key areas for improvement - two relating to the game itself and one relating to the driver.  Of those, only the last one (that relating to the driver) is - strictly speaking - directly relevant to the OpenGL vs D3D performance question, but that would be assuming that all other things are equal, and of course the game's use of the API is also a huge factor.

 

Working with the hardware vendors on resolving these, as well as fixing up the game's use of the API, gave the end result, following which they again noted that "it comes down to a few additional microseconds overhead per batch in Direct3D which does not affect OpenGL on Windows" - so the specific reason for the performance difference was identified, and it was isolated to one very specific difference between the two APIs; this is quite clearly not a case "my API is faster than your API" but rather a case of "this one part of my API, in the way we use it for this one particular game, on this one particular hardware configuration, is faster than the corresponding one part of your API in the same circumstances".

 

That's about as far from a meaningful scientific comparison as it's possible to get.

 

In actual fact, well-coded OpenGL will always smoke poorly-coded D3D, just as well-coded D3D will likewise smoke poorly-coded OpenGL.  I'm not saying that Valve's D3D code is poor (I'd expect it to be close enough to the best D3D code on the planet), but it is still using an ancient version of the API which - guess what - is widely recognized to have more overhead in exactly the area that Valve noted.  And that would be an expected result for any code that particularly stresses that particular area.  So the end result actually does nothing more than confirm what we already knew!  Wowsers!

 

A more detailed breakdown of performance comparisons between different parts of each renderer would be expected to see D3D pulling ahead in some areas but GL pulling ahead in others.  If they're doing any dynamic vertex buffer updates, for example, then - assuming a GL2.0/2.1 baseline - I'd expect to see D3D doing those faster than the GL code.

 

Finally, it's necessary to note Valve's conclusion: "now that we know the hardware is capable of more performance, we will go back and figure out how to mitigate this effect under Direct3D."   Again, this is not a case of "my API is faster than your API", this is instead a recognition that their own use of D3D may have room for further performance improvment and that a mitigation of the identified bottleneck may see D3D pulling ahead again.

 

Like they said at the very start: "performance is a complicated issue".

 

All references: http://blogs.valvesoftware.com/linux/faster-zombies/

Share this post


Link to post
Share on other sites
Sign in to follow this  

  • Advertisement
  • Advertisement
  • Popular Now

  • Advertisement
  • Similar Content

    • By reenigne
      For those that don't know me. I am the individual who's two videos are listed here under setup for https://wiki.libsdl.org/Tutorials
      I also run grhmedia.com where I host the projects and code for the tutorials I have online.
      Recently, I received a notice from youtube they will be implementing their new policy in protecting video content as of which I won't be monetized till I meat there required number of viewers and views each month.

      Frankly, I'm pretty sick of youtube. I put up a video and someone else learns from it and puts up another video and because of the way youtube does their placement they end up with more views.
      Even guys that clearly post false information such as one individual who said GLEW 2.0 was broken because he didn't know how to compile it. He in short didn't know how to modify the script he used because he didn't understand make files and how the requirements of the compiler and library changes needed some different flags.

      At the end of the month when they implement this I will take down the content and host on my own server purely and it will be a paid system and or patreon. 

      I get my videos may be a bit dry, I generally figure people are there to learn how to do something and I rather not waste their time. 
      I used to also help people for free even those coming from the other videos. That won't be the case any more. I used to just take anyone emails and work with them my email is posted on the site.

      I don't expect to get the required number of subscribers in that time or increased views. Even if I did well it wouldn't take care of each reoccurring month.
      I figure this is simpler and I don't plan on putting some sort of exorbitant fee for a monthly subscription or the like.
      I was thinking on the lines of a few dollars 1,2, and 3 and the larger subscription gets you assistance with the content in the tutorials if needed that month.
      Maybe another fee if it is related but not directly in the content. 
      The fees would serve to cut down on the number of people who ask for help and maybe encourage some of the people to actually pay attention to what is said rather than do their own thing. That actually turns out to be 90% of the issues. I spent 6 hours helping one individual last week I must have asked him 20 times did you do exactly like I said in the video even pointed directly to the section. When he finally sent me a copy of the what he entered I knew then and there he had not. I circled it and I pointed out that wasn't what I said to do in the video. I didn't tell him what was wrong and how I knew that way he would go back and actually follow what it said to do. He then reported it worked. Yea, no kidding following directions works. But hey isn't alone and well its part of the learning process.

      So the point of this isn't to be a gripe session. I'm just looking for a bit of feed back. Do you think the fees are unreasonable?
      Should I keep the youtube channel and do just the fees with patreon or do you think locking the content to my site and require a subscription is an idea.

      I'm just looking at the fact it is unrealistic to think youtube/google will actually get stuff right or that youtube viewers will actually bother to start looking for more accurate videos. 
    • By Balma Alparisi
      i got error 1282 in my code.
      sf::ContextSettings settings; settings.majorVersion = 4; settings.minorVersion = 5; settings.attributeFlags = settings.Core; sf::Window window; window.create(sf::VideoMode(1600, 900), "Texture Unit Rectangle", sf::Style::Close, settings); window.setActive(true); window.setVerticalSyncEnabled(true); glewInit(); GLuint shaderProgram = createShaderProgram("FX/Rectangle.vss", "FX/Rectangle.fss"); float vertex[] = { -0.5f,0.5f,0.0f, 0.0f,0.0f, -0.5f,-0.5f,0.0f, 0.0f,1.0f, 0.5f,0.5f,0.0f, 1.0f,0.0f, 0.5,-0.5f,0.0f, 1.0f,1.0f, }; GLuint indices[] = { 0,1,2, 1,2,3, }; GLuint vao; glGenVertexArrays(1, &vao); glBindVertexArray(vao); GLuint vbo; glGenBuffers(1, &vbo); glBindBuffer(GL_ARRAY_BUFFER, vbo); glBufferData(GL_ARRAY_BUFFER, sizeof(vertex), vertex, GL_STATIC_DRAW); GLuint ebo; glGenBuffers(1, &ebo); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ebo); glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices,GL_STATIC_DRAW); glVertexAttribPointer(0, 3, GL_FLOAT, false, sizeof(float) * 5, (void*)0); glEnableVertexAttribArray(0); glVertexAttribPointer(1, 2, GL_FLOAT, false, sizeof(float) * 5, (void*)(sizeof(float) * 3)); glEnableVertexAttribArray(1); GLuint texture[2]; glGenTextures(2, texture); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, texture[0]); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); sf::Image* imageOne = new sf::Image; bool isImageOneLoaded = imageOne->loadFromFile("Texture/container.jpg"); if (isImageOneLoaded) { glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, imageOne->getSize().x, imageOne->getSize().y, 0, GL_RGBA, GL_UNSIGNED_BYTE, imageOne->getPixelsPtr()); glGenerateMipmap(GL_TEXTURE_2D); } delete imageOne; glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, texture[1]); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); sf::Image* imageTwo = new sf::Image; bool isImageTwoLoaded = imageTwo->loadFromFile("Texture/awesomeface.png"); if (isImageTwoLoaded) { glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, imageTwo->getSize().x, imageTwo->getSize().y, 0, GL_RGBA, GL_UNSIGNED_BYTE, imageTwo->getPixelsPtr()); glGenerateMipmap(GL_TEXTURE_2D); } delete imageTwo; glUniform1i(glGetUniformLocation(shaderProgram, "inTextureOne"), 0); glUniform1i(glGetUniformLocation(shaderProgram, "inTextureTwo"), 1); GLenum error = glGetError(); std::cout << error << std::endl; sf::Event event; bool isRunning = true; while (isRunning) { while (window.pollEvent(event)) { if (event.type == event.Closed) { isRunning = false; } } glClear(GL_COLOR_BUFFER_BIT); if (isImageOneLoaded && isImageTwoLoaded) { glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, texture[0]); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, texture[1]); glUseProgram(shaderProgram); } glBindVertexArray(vao); glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, nullptr); glBindVertexArray(0); window.display(); } glDeleteVertexArrays(1, &vao); glDeleteBuffers(1, &vbo); glDeleteBuffers(1, &ebo); glDeleteProgram(shaderProgram); glDeleteTextures(2,texture); return 0; } and this is the vertex shader
      #version 450 core layout(location=0) in vec3 inPos; layout(location=1) in vec2 inTexCoord; out vec2 TexCoord; void main() { gl_Position=vec4(inPos,1.0); TexCoord=inTexCoord; } and the fragment shader
      #version 450 core in vec2 TexCoord; uniform sampler2D inTextureOne; uniform sampler2D inTextureTwo; out vec4 FragmentColor; void main() { FragmentColor=mix(texture(inTextureOne,TexCoord),texture(inTextureTwo,TexCoord),0.2); } I was expecting awesomeface.png on top of container.jpg

    • By khawk
      We've just released all of the source code for the NeHe OpenGL lessons on our Github page at https://github.com/gamedev-net/nehe-opengl. code - 43 total platforms, configurations, and languages are included.
      Now operated by GameDev.net, NeHe is located at http://nehe.gamedev.net where it has been a valuable resource for developers wanting to learn OpenGL and graphics programming.

      View full story
    • By TheChubu
      The Khronos™ Group, an open consortium of leading hardware and software companies, announces from the SIGGRAPH 2017 Conference the immediate public availability of the OpenGL® 4.6 specification. OpenGL 4.6 integrates the functionality of numerous ARB and EXT extensions created by Khronos members AMD, Intel, and NVIDIA into core, including the capability to ingest SPIR-V™ shaders.
      SPIR-V is a Khronos-defined standard intermediate language for parallel compute and graphics, which enables content creators to simplify their shader authoring and management pipelines while providing significant source shading language flexibility. OpenGL 4.6 adds support for ingesting SPIR-V shaders to the core specification, guaranteeing that SPIR-V shaders will be widely supported by OpenGL implementations.
      OpenGL 4.6 adds the functionality of these ARB extensions to OpenGL’s core specification:
      GL_ARB_gl_spirv and GL_ARB_spirv_extensions to standardize SPIR-V support for OpenGL GL_ARB_indirect_parameters and GL_ARB_shader_draw_parameters for reducing the CPU overhead associated with rendering batches of geometry GL_ARB_pipeline_statistics_query and GL_ARB_transform_feedback_overflow_querystandardize OpenGL support for features available in Direct3D GL_ARB_texture_filter_anisotropic (based on GL_EXT_texture_filter_anisotropic) brings previously IP encumbered functionality into OpenGL to improve the visual quality of textured scenes GL_ARB_polygon_offset_clamp (based on GL_EXT_polygon_offset_clamp) suppresses a common visual artifact known as a “light leak” associated with rendering shadows GL_ARB_shader_atomic_counter_ops and GL_ARB_shader_group_vote add shader intrinsics supported by all desktop vendors to improve functionality and performance GL_KHR_no_error reduces driver overhead by allowing the application to indicate that it expects error-free operation so errors need not be generated In addition to the above features being added to OpenGL 4.6, the following are being released as extensions:
      GL_KHR_parallel_shader_compile allows applications to launch multiple shader compile threads to improve shader compile throughput WGL_ARB_create_context_no_error and GXL_ARB_create_context_no_error allow no error contexts to be created with WGL or GLX that support the GL_KHR_no_error extension “I’m proud to announce OpenGL 4.6 as the most feature-rich version of OpenGL yet. We've brought together the most popular, widely-supported extensions into a new core specification to give OpenGL developers and end users an improved baseline feature set. This includes resolving previous intellectual property roadblocks to bringing anisotropic texture filtering and polygon offset clamping into the core specification to enable widespread implementation and usage,” said Piers Daniell, chair of the OpenGL Working Group at Khronos. “The OpenGL working group will continue to respond to market needs and work with GPU vendors to ensure OpenGL remains a viable and evolving graphics API for all its customers and users across many vital industries.“
      The OpenGL 4.6 specification can be found at https://khronos.org/registry/OpenGL/index_gl.php. The GLSL to SPIR-V compiler glslang has been updated with GLSL 4.60 support, and can be found at https://github.com/KhronosGroup/glslang.
      Sophisticated graphics applications will also benefit from a set of newly released extensions for both OpenGL and OpenGL ES to enable interoperability with Vulkan and Direct3D. These extensions are named:
      GL_EXT_memory_object GL_EXT_memory_object_fd GL_EXT_memory_object_win32 GL_EXT_semaphore GL_EXT_semaphore_fd GL_EXT_semaphore_win32 GL_EXT_win32_keyed_mutex They can be found at: https://khronos.org/registry/OpenGL/index_gl.php
      Industry Support for OpenGL 4.6
      “With OpenGL 4.6 our customers have an improved set of core features available on our full range of OpenGL 4.x capable GPUs. These features provide improved rendering quality, performance and functionality. As the graphics industry’s most popular API, we fully support OpenGL and will continue to work closely with the Khronos Group on the development of new OpenGL specifications and extensions for our customers. NVIDIA has released beta OpenGL 4.6 drivers today at https://developer.nvidia.com/opengl-driver so developers can use these new features right away,” said Bob Pette, vice president, Professional Graphics at NVIDIA.
      "OpenGL 4.6 will be the first OpenGL release where conformant open source implementations based on the Mesa project will be deliverable in a reasonable timeframe after release. The open sourcing of the OpenGL conformance test suite and ongoing work between Khronos and X.org will also allow for non-vendor led open source implementations to achieve conformance in the near future," said David Airlie, senior principal engineer at Red Hat, and developer on Mesa/X.org projects.

      View full story
    • By _OskaR
      Hi,
      I have an OpenGL application but without possibility to wite own shaders.
      I need to perform small VS modification - is possible to do it in an alternative way? Do we have apps or driver modifictions which will catch the shader sent to GPU and override it?
  • Advertisement