• Announcements

    • khawk

      Download the Game Design and Indie Game Marketing Freebook   07/19/17

      GameDev.net and CRC Press have teamed up to bring a free ebook of content curated from top titles published by CRC Press. The freebook, Practices of Game Design & Indie Game Marketing, includes chapters from The Art of Game Design: A Book of Lenses, A Practical Guide to Indie Game Marketing, and An Architectural Approach to Level Design. The GameDev.net FreeBook is relevant to game designers, developers, and those interested in learning more about the challenges in game development. We know game development can be a tough discipline and business, so we picked several chapters from CRC Press titles that we thought would be of interest to you, the GameDev.net audience, in your journey to design, develop, and market your next game. The free ebook is available through CRC Press by clicking here. The Curated Books The Art of Game Design: A Book of Lenses, Second Edition, by Jesse Schell Presents 100+ sets of questions, or different lenses, for viewing a game’s design, encompassing diverse fields such as psychology, architecture, music, film, software engineering, theme park design, mathematics, anthropology, and more. Written by one of the world's top game designers, this book describes the deepest and most fundamental principles of game design, demonstrating how tactics used in board, card, and athletic games also work in video games. It provides practical instruction on creating world-class games that will be played again and again. View it here. A Practical Guide to Indie Game Marketing, by Joel Dreskin Marketing is an essential but too frequently overlooked or minimized component of the release plan for indie games. A Practical Guide to Indie Game Marketing provides you with the tools needed to build visibility and sell your indie games. With special focus on those developers with small budgets and limited staff and resources, this book is packed with tangible recommendations and techniques that you can put to use immediately. As a seasoned professional of the indie game arena, author Joel Dreskin gives you insight into practical, real-world experiences of marketing numerous successful games and also provides stories of the failures. View it here. An Architectural Approach to Level Design This is one of the first books to integrate architectural and spatial design theory with the field of level design. The book presents architectural techniques and theories for level designers to use in their own work. It connects architecture and level design in different ways that address the practical elements of how designers construct space and the experiential elements of how and why humans interact with this space. Throughout the text, readers learn skills for spatial layout, evoking emotion through gamespaces, and creating better levels through architectural theory. View it here. Learn more and download the ebook by clicking here. Did you know? GameDev.net and CRC Press also recently teamed up to bring GDNet+ Members up to a 20% discount on all CRC Press books. Learn more about this and other benefits here.
Sign in to follow this  
Followers 0

Shader Compile Error Question

1 post in this topic

I have my fragment shader here, but when compiling I get an error: ERROR: 0:30: error(#132) Syntax error: '_light' parse error

It is most likely something silly I just need a second set of eyes is my guess.


#version 330 core

struct Attenuation
    int constant;
    int linear;
    int exponential;

struct BaseLight
	vec4 colour;
    float ambientIntensity;
    float diffuseIntensity;  

struct DirectionalLight 
    BaseLight base;
    vec3 direction;        

struct PointLight
	BaseLight base;  
    vec3 position;
	Attenuation attenuation;

//Line 30 below
vec3 CalcLightInternal(struct BaseLight _light, vec3 _lightDirection, vec3 _normal);
vec3 CalcDirectionalLight(vec3 _normal);
vec3 CalcPointLight(int _index, vec3 _normal);

const int MAX_POINT_LIGHTS = 5;

in vec2 uv0;
in vec3 normal0;
in vec3 worldPos0;

out vec3 finalColor;

uniform DirectionalLight directionalLight;
uniform PointLight pointLights[MAX_POINT_LIGHTS];

uniform int numPointLights;

uniform int lightingEnabled;

uniform vec3 cameraEyeWorldPosition;

uniform float specularIntensity;
uniform float specularPower;

uniform sampler2D diffusetexture;

void main()
	vec3 MaterialDiffuseColor = texture2D(diffusetexture, uv0).rgb;

	vec3 Normal = normalize(normal0);

	if(lightingEnabled == 1)
		vec3 TotalLight = CalcDirectionalLight(Normal);

		for (int i = 0; i < numPointLights; i++)
			TotalLight += CalcPointLight(i, Normal);

		finalColor = MaterialDiffuseColor * TotalLight;
		finalColor = MaterialDiffuseColor;

vec3 CalcLightInternal(struct BaseLight _light, vec3 _lightDirection, vec3 _normal)
	vec3 AmbientColor = _light.colour * _light.ambientIntensity;

	float DiffuseFactor = dot(normalize(_normal), _lightDirection);

	vec3 DiffuseColor = vec3(0, 0, 0);
	vec3 SpecularColor  = vec3(0, 0, 0);

	if (DiffuseFactor > 0) 
        DiffuseColor = _light.colour * _light.diffuseIntensity * DiffuseFactor;

		vec3 VertexToEye = normalize(cameraEyeWorldPosition - worldPos0);
		vec3 LightReflect = normalize(reflect(_lightDirection, Normal));
		float SpecularFactor = dot(VertexToEye, LightReflect);
		SpecularFactor = pow(SpecularFactor, specularPower);

		if (SpecularFactor > 0) 
			SpecularColor = _light.colour * specularIntensity * SpecularFactor;

	return (AmbientColor + DiffuseColor + SpecularColor);

vec3 CalcDirectionalLight(vec3 _normal)
    return CalcLightInternal(directionalLight.base, directionalLight.direction, _normal);

vec3 CalcPointLight(int _index, vec3 _normal)
    vec3 LightDirection = WorldPos0 - pointLights[_index].position;
    float Distance = length(LightDirection);
    LightDirection = normalize(LightDirection);

    vec4 Color = CalcLightInternal(pointLights[Index].base, LightDirection, _normal);
    float Attenuation =  pointLights[_index].attenuation.constant +
                         pointLights[_index].attenuation.linear * Distance +
                         pointLights[_index].attenuation.exponential * Distance * Distance; 

    return Color / Attenuation;




Share this post

Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  
Followers 0