• Advertisement
  • Popular Tags

  • Popular Now

  • Advertisement
  • Similar Content

    • By fs1
      I have been trying to see how the ID3DInclude, and how its methods Open and Close work.
      I would like to add a custom path for the D3DCompile function to search for some of my includes.
      I have not found any working example. Could someone point me on how to implement these functions? I would like D3DCompile to look at a custom C:\Folder path for some of the include files.
      Thanks
    • By stale
      I'm continuing to learn more about terrain rendering, and so far I've managed to load in a heightmap and render it as a tessellated wireframe (following Frank Luna's DX11 book). However, I'm getting some really weird behavior where a large section of the wireframe is being rendered with a yellow color, even though my pixel shader is hard coded to output white. 

      The parts of the mesh that are discolored changes as well, as pictured below (mesh is being clipped by far plane).

      Here is my pixel shader. As mentioned, I simply hard code it to output white:
      float PS(DOUT pin) : SV_Target { return float4(1.0f, 1.0f, 1.0f, 1.0f); } I'm completely lost on what could be causing this, so any help in the right direction would be greatly appreciated. If I can help by providing more information please let me know.
    • By evelyn4you
      Hello,
      i try to implement voxel cone tracing in my game engine.
      I have read many publications about this, but some crucial portions are still not clear to me.
      At first step i try to emplement the easiest "poor mans" method
      a.  my test scene "Sponza Atrium" is voxelized completetly in a static voxel grid 128^3 ( structured buffer contains albedo)
      b. i dont care about "conservative rasterization" and dont use any sparse voxel access structure
      c. every voxel does have the same color for every side ( top, bottom, front .. )
      d.  one directional light injects light to the voxels ( another stuctured buffer )
      I will try to say what i think is correct ( please correct me )
      GI lighting a given vertecie  in a ideal method
      A.  we would shoot many ( e.g. 1000 ) rays in the half hemisphere which is oriented according to the normal of that vertecie
      B.  we would take into account every occluder ( which is very much work load) and sample the color from the hit point.
      C. according to the angle between ray and the vertecie normal we would weigth ( cosin ) the color and sum up all samples and devide by the count of rays
      Voxel GI lighting
      In priciple we want to do the same thing with our voxel structure.
      Even if we would know where the correct hit points of the vertecie are we would have the task to calculate the weighted sum of many voxels.
      Saving time for weighted summing up of colors of each voxel
      To save the time for weighted summing up of colors of each voxel we build bricks or clusters.
      Every 8 neigbour voxels make a "cluster voxel" of level 1, ( this is done recursively for many levels ).
      The color of a side of a "cluster voxel" is the average of the colors of the four containing voxels sides with the same orientation.

      After having done this we can sample the far away parts just by sampling the coresponding "cluster voxel with the coresponding level" and get the summed up color.
      Actually this process is done be mip mapping a texture that contains the colors of the voxels which places the color of the neighbouring voxels also near by in the texture.
      Cone tracing, howto ??
      Here my understanding is confus ?? How is the voxel structure efficiently traced.
      I simply cannot understand how the occlusion problem is fastly solved so that we know which single voxel or "cluster voxel" of which level we have to sample.
      Supposed,  i am in a dark room that is filled with many boxes of different kind of sizes an i have a pocket lamp e.g. with a pyramid formed light cone
      - i would see some single voxels near or far
      - i would also see many different kind of boxes "clustered voxels" of different sizes which are partly occluded
      How do i make a weighted sum of this ligting area ??
      e.g. if i want to sample a "clustered voxel level 4" i have to take into account how much per cent of the area of this "clustered voxel" is occluded.
      Please be patient with me, i really try to understand but maybe i need some more explanation than others
      best regards evelyn
       
       
    • By Endemoniada

      Hi guys, when I do picking followed by ray-plane intersection the results are all wrong. I am pretty sure my ray-plane intersection is correct so I'll just show the picking part. Please take a look:
       
      // get projection_matrix DirectX::XMFLOAT4X4 mat; DirectX::XMStoreFloat4x4(&mat, projection_matrix); float2 v; v.x = (((2.0f * (float)mouse_x) / (float)screen_width) - 1.0f) / mat._11; v.y = -(((2.0f * (float)mouse_y) / (float)screen_height) - 1.0f) / mat._22; // get inverse of view_matrix DirectX::XMMATRIX inv_view = DirectX::XMMatrixInverse(nullptr, view_matrix); DirectX::XMStoreFloat4x4(&mat, inv_view); // create ray origin (camera position) float3 ray_origin; ray_origin.x = mat._41; ray_origin.y = mat._42; ray_origin.z = mat._43; // create ray direction float3 ray_dir; ray_dir.x = v.x * mat._11 + v.y * mat._21 + mat._31; ray_dir.y = v.x * mat._12 + v.y * mat._22 + mat._32; ray_dir.z = v.x * mat._13 + v.y * mat._23 + mat._33;  
      That should give me a ray origin and direction in world space but when I do the ray-plane intersection the results are all wrong.
      If I click on the bottom half of the screen ray_dir.z becomes negative (more so as I click lower). I don't understand how that can be, shouldn't it always be pointing down the z-axis ?
      I had this working in the past but I can't find my old code
      Please help. Thank you.
    • By turanszkij
      Hi,
      I finally managed to get the DX11 emulating Vulkan device working but everything is flipped vertically now because Vulkan has a different clipping space. What are the best practices out there to keep these implementation consistent? I tried using a vertically flipped viewport, and while it works on Nvidia 1050, the Vulkan debug layer is throwing error messages that this is not supported in the spec so it might not work on others. There is also the possibility to flip the clip scpace position Y coordinate before writing out with vertex shader, but that requires changing and recompiling every shader. I could also bake it into the camera projection matrices, though I want to avoid that because then I need to track down for the whole engine where I upload matrices... Any chance of an easy extension or something? If not, I will probably go with changing the vertex shaders.
  • Advertisement
  • Advertisement
Sign in to follow this  

DX11 What is the point of using Catmull-Clark subdivision shaders?

This topic is 1910 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

If you intended to correct an error in the post then please contact us.

Recommended Posts

I've been checking out demos of Catmull-Clark subdivisions implemented with DX11 tessellation,however I don't understand what exactly is the benefit of this technique.The visual effects are identical to the simpler,basic dynamic-LOD-tessellation shaders in the samples,yet the Catmull-Clark samples are a LOT heavier on performance.What am I missing?

Share this post


Link to post
Share on other sites
Advertisement

I'm not that familiar with the samples, but they're probably just implementing "linear" tesselation, where more triangles are added, but they don't curve at all to better match the curved surface that's roughly defined by their 'source' triangles. This is useful when you need extra vertices for something like displacement mapping, but not for smoothing out edges.


Catmull-Clark subD surfaces add curvature to the generated "sub triangles", e.g. on the Wikipedia page, you can see a cube bulge out into a sphere. The artist has control over how/where this "bulging" will occur.

Also, these surfaces and their behaviours are programmed into many 3D modelling packages, so if you implement them in the exact same way, then an artist working with Max/Maya/Blender/Softimage/etc can tweak their "bulge"/"smooth" parameters to get the kind of shape that they want, and then know it's actually going to appear that way in the engine too.

Edited by Hodgman

Share this post


Link to post
Share on other sites

actually, the artist have barely control over where bulging etc. happens, if you look for it on the net, you'll see that a lot of beginner artist wonder how they can control it. e.g. if you have a cylinder and you tessellate it with catmull-clark to make it rounder, you will end up with a capsule shape. some editing packages add extensions where artist can define hard borders, but most work-arounds for the original algorithm are to add two borders on edges you want to preserve to some degree (beveling in 3ds max), but you still get some smoothing at them.

but that's actually what makes catmull clark so nice and why artist who worked with the pure version, don't like the tools that extend it. if you have some nurb surfaces or bezier patches or ..., artist have to tweak them, and if you have an animated mesh, you have to tweak those control points in every keyframe, which makes it quite a lot of work. catmull clark meshes just work, they deliver mostly the expected result, they have no control points to skin with the mesh or to adjust. you tessellate an object, it looks nice, you apply a displacement texture and that's it. and while other algorithms usually get into trouble when you vary in the valence of your polys, catmull clark also works nicely in those special cases.

 

I also think you haven't seen a DX11 tessellation implementation of catmull clark, the tessellator hardware of dx11 cannot really be used for catmull clark as catmull clark is a recursive approach. there are ways to make it none-recursive, but the higher the tessellation factor, the more of the mesh you evaluate, it's not doable beyond some simple shapes. you've probably seen some approximation of catmull clark using e.g. bezier patches. but those are quite complex and error prone to implement and you need to run them on every animation step of a mesh, to re-create the approximation (at least that's what I've read in the papers when I was implementing it).

 

however, it's quite straight forward to implement catmull clark via compute. it's actually really nice for GPUs, working on every vertex independently etc.

http://twitpic.com/3ud6cx

:)

Share this post


Link to post
Share on other sites

actually, the artist have barely control over where bulging etc. happens

I've never modelled anything with catmull-clark surfaces -- is the tesselation shape dependent only on the vertex positions and normals, like phong tesselation?

Share this post


Link to post
Share on other sites



actually, the artist have barely control over where bulging etc. happens

I've never modelled anything with catmull-clark surfaces -- is the tesselation shape dependent only on the vertex positions and normals, like phong tesselation?
Normals are ignored. The new points are build by averaging neighbouring polygon centers, edge centers, vertices... The different rules for subdivided corner points / edge-, poly-centers are simple, but because the process is recursive, it's difficult to accelerate.

I've done a lot of modeling with catmull clark and also made my own editor because i was not happy with crease options from commercial apps.
For modeling organic shapes catmull clark is the best option. With proper creases it's also a very good alternative to nurbs for things like cars etc., while still easier to understand.
Cons are: You need to avoid triangles and use regular quad grids whenever possible. A good model will end up with mostly quads, some 5 sided and a few 6 sided polygons.
Subdividing a typical triangulated mesh makes no sense - you need to have the original quadbased model to get good results.

The first subdivision step is special, it does the most important work and ends up with a mesh containing quads only.
For a good HW-acceleration it gives sense to do it with its own algorithm, maybe on CPU.
For following steps it could give sense to switch to a more hardware friendly method, like bezier patches.

If anyone has experience with practical HW-acceleration i would like to hear something about it too...
Note that this can be a very good thing, because if you do the skinning with the low res control mesh, you get MUCH better final high res skinning! This also saves some work, as you don't need to skin the subdivided stuff.

Skinning is where difference to other tesselation methods shows up most noticeably. Because the corner vertices get smoothed too, not just the surface around them. Maybe it's hard for a programmer to get the point why they are so good compared th other methods - but with skinning the difference in visual quality is really huge. Trust me :) Edited by JoeJ

Share this post


Link to post
Share on other sites

Hodgman

JoeJ pretty much hits the spot :)

just to emphasize it, while just positions are taken and it sounds like you loose a lot of informations (e.g. curvature that normals might express), it's actually the really good point of the algorithm, it is very very simple, you know what to expect, every implementation will lead to the same result (if you try to get some data from one modeling package to the other, tessellated stuff can be a horror, while catmull-clark basically is just an obj mesh, no extra features/data).

 

If anyone has experience with practical HW-acceleration i would like to hear something about it too...
Note that this can be a very good thing, because if you do the skinning with the low res control mesh, you get MUCH better final high res skinning! This also saves some work, as you don't need to skin the subdivided stuff.

you mean the tessellator on GPU? I've used it to implement an approximation described in this paper: http://faculty.cs.tamu.edu/schaefer/research/acc.pdf

 

as I said in my first post here, the sad thing comes with animation, I had to evaluate the skinned mesh every time, to generate those patches and to make it leak-free is quite an effort, nothing compared to the simplicity and beauty of catmull-clark tessellation.

 

 

Skinning is where difference to other tesselation methods shows up most noticeably. Because the corner vertices get smoothed too, not just the surface around them. Maybe it's hard for a programmer to get the point why they are so good compared th other methods - but with skinning the difference in visual quality is really huge. Trust me smile.png

I totally agree, that's why I've made the GPGU version of it, it works flawlessly with skinned characters, it's fast even in the cpu version (vectorized), you can go crazy to 1Mio vertices, then displace them (also with GPGPU) and it just works. :)

 

Hardware tessellation units are way faster, of course, but even without HW, you can get to a point where the polycount exceeds the pixelcount by far (while you still have normalmaps etc) and it's still running smoothly on average GPUs.

Share this post


Link to post
Share on other sites

Thx for summing up again, that gives a lot of sense to me now. I'm not really up to date with GPU stuff and missed the point that OGL/DX now have their own compute stuff and we can avoid to choose between Cuda or OpenCL :)

Share this post


Link to post
Share on other sites

Thx for summing up again, that gives a lot of sense to me now. I'm not really up to date with GPU stuff and missed the point that OGL/DX now have their own compute stuff and we can avoid to choose between Cuda or OpenCL smile.png

I've actually implemented it in OpenCL.

I've also written an rasterizer in OpenCL (for this renderer) rather than inter-op with OGL/DX ( tho, I have sadly no Catmull+software screenshot, just http://twitpic.com/40e85b ), but abusing the massive compute power for rasterization works actually quite nicely. you setup 1024 triangles into the local memory, then you can work on them in 8x8 pixel granularity, I think I got 10% to 20% of the theoretical peak hardware rasterization performance in a real world scenario. it wasn't even fully optimized, I just stopped when it was fast enough (was just like 2 or 3 days of work to make the rasterizer).

Share this post


Link to post
Share on other sites
Sign in to follow this  

  • Advertisement