• Announcements

    • khawk

      Download the Game Design and Indie Game Marketing Freebook   07/19/17

      GameDev.net and CRC Press have teamed up to bring a free ebook of content curated from top titles published by CRC Press. The freebook, Practices of Game Design & Indie Game Marketing, includes chapters from The Art of Game Design: A Book of Lenses, A Practical Guide to Indie Game Marketing, and An Architectural Approach to Level Design. The GameDev.net FreeBook is relevant to game designers, developers, and those interested in learning more about the challenges in game development. We know game development can be a tough discipline and business, so we picked several chapters from CRC Press titles that we thought would be of interest to you, the GameDev.net audience, in your journey to design, develop, and market your next game. The free ebook is available through CRC Press by clicking here. The Curated Books The Art of Game Design: A Book of Lenses, Second Edition, by Jesse Schell Presents 100+ sets of questions, or different lenses, for viewing a game’s design, encompassing diverse fields such as psychology, architecture, music, film, software engineering, theme park design, mathematics, anthropology, and more. Written by one of the world's top game designers, this book describes the deepest and most fundamental principles of game design, demonstrating how tactics used in board, card, and athletic games also work in video games. It provides practical instruction on creating world-class games that will be played again and again. View it here. A Practical Guide to Indie Game Marketing, by Joel Dreskin Marketing is an essential but too frequently overlooked or minimized component of the release plan for indie games. A Practical Guide to Indie Game Marketing provides you with the tools needed to build visibility and sell your indie games. With special focus on those developers with small budgets and limited staff and resources, this book is packed with tangible recommendations and techniques that you can put to use immediately. As a seasoned professional of the indie game arena, author Joel Dreskin gives you insight into practical, real-world experiences of marketing numerous successful games and also provides stories of the failures. View it here. An Architectural Approach to Level Design This is one of the first books to integrate architectural and spatial design theory with the field of level design. The book presents architectural techniques and theories for level designers to use in their own work. It connects architecture and level design in different ways that address the practical elements of how designers construct space and the experiential elements of how and why humans interact with this space. Throughout the text, readers learn skills for spatial layout, evoking emotion through gamespaces, and creating better levels through architectural theory. View it here. Learn more and download the ebook by clicking here. Did you know? GameDev.net and CRC Press also recently teamed up to bring GDNet+ Members up to a 20% discount on all CRC Press books. Learn more about this and other benefits here.
Sign in to follow this  
Followers 0

OpenGL clipping at odd distances from the screen

0 posts in this topic

I'm learning modern OpenGL after dabbling with NeHes tutorials a few years ago. I started following the tutorials here, but I ended up with a problem when I got to the fifth tutorial in the "basics" arc. It required the C++ library GLM, which doesn't have a binding for D, which is the language I'm using for this. Having written up the code now for a simple set of matrix and vector routines, I'm testing and getting some weird results. First off, my rotating cube seems to be horrifically skewed and stretched, but only when I introduce my camera and frustum matrices. Secondly, my cube seems to start clipping when it reaches closer than 0.4 in Z screen space. I have confirmed both my matrix multiplication code, and my frustum matrix having the correct values. I'm not sure what it could be that is affecting this, so this is the code for my "idle" function which is called whenever the "update" function has returned;

auto cam = new camera;cam.translate( move_x, 0, move_z+2 );
auto model = new matrix;

// frustum matches glFrustum, see that function for arguments
auto frust = frustum(-0.5, 0.5, -0.5, 0.5, 0.1, 100 );
auto axis = (new vector( 1, 1, 1 )).normalize;
model.translate( move, 0, 0 );
model.rotate( angle, axis );
model.scale( 0.3 );

matrix transform = model * cam * frust;

glUseProgram( program );
if( trans_m != -1 )
  glUniformMatrix4fv( trans_m, 1, GL_FALSE, transform.cols.ptr );

While the drawing code just takes the vertices and colours and renders them, and the shader uses the matrix created above to transform each vertex. The cube stretches off into the distance, clips before reaching the camera, and skews when viewed from even slightly a different angle to head-on. Needless to say, I'm getting frustrated. I know there probably isn't enough here to go on, but to avoid an info-dump, if you could let me know which parts you would like to look at to work this out, I'll post them up ASAP.

Thanks in advance for any help.

EDIT: OK, so plenty of views, but no answers? Is it just that people don't have enough experience in D to help, or would it help if I add some more code? I'll include my math module below, sans any functions not being used at the moment, if that helps:

module math3d;


OpenGL GLSL matrices;

Matrices are in column order, so:
    [ 0, 4,  8, 12 ]
    [ 1, 5,  9, 13 ]
    [ 2, 6, 10, 14 ]
    [ 3, 7, 11, 15 ]

Translation matrix is:
    [ 1, 0, 0, x ]
    [ 0, 1, 0, y ]
    [ 0, 0, 1, z ]
    [ 0, 0, 0, 1 ]

Rotation( angle, axis ) matrix is:
    [ (x^2)*(1-cos(angle))+cos(angle), x*y*(1-cos(angle))-z*sin(angle), x*z*(1-cos(angle))+y*sin(angle), 0 ]
    [ x*y*(1-cos(angle))+z*sin(angle), (y^2)*(1-cos(angle))+cos(angle), y*z*(1-cos(angle))-x*sin(angle), 0 ]
    [ x*z*(1-cos(angle))-y*sin(angle), y*z*(1-cos(angle))+x*sin(angle), (z^2)*(1-cos(angle))+cos(angle), 0 ]
    [                 0,                                    0,                                0,                 1 ]

Scale matrix is:
    [ x, 0, 0, 0 ]
    [ 0, y, 0, 0 ]
    [ 0, 0, z, 0 ]
    [ 0, 0, 0, 1 ]


public import std.math;

import std.stdio;

class vector{
    float[4] array;
    this( float a, float b, float c, float d = 1.0f ){
        array = [ a, b, c, d ];
        this( 0.0, 0.0, 0.0 );
    this( float[4] r ){
        array = r;
    this( float[] r ){
        if( r.length >=4 )
            array = r;
            array[0..r.length] = r;
            array[r.length..$] = 0;
            array[3] = 1;
    @property float x(){ return array[0]; }
    @property float y(){ return array[1]; }
    @property float z(){ return array[2]; }
    @property float w(){ return array[3]; }
    @property float x( float c ){ return array[0] = c; }
    @property float y( float c ){ return array[1] = c; }
    @property float z( float c ){ return array[2] = c; }
    @property float w( float c ){ return array[3] = c; }
    vector opBinary( string op )( vector v ){
        return mixin( "new vector( array"~op~"v.array )" );
    vector opBinary( string op )( matrix m ){
        vector ret = new vector;
        static if( op == "*" ){
            ret.x = x*m.cols[0][0] + x*m.cols[0][1] + x*m.cols[0][2] + x*m.cols[0][3];
            ret.y = y*m.cols[0][0] + y*m.cols[0][1] + y*m.cols[0][2] + y*m.cols[0][3];
            ret.z = z*m.cols[0][0] + z*m.cols[0][1] + z*m.cols[0][2] + z*m.cols[0][3];
            ret.w = w*m.cols[0][0] + w*m.cols[0][1] + w*m.cols[0][2] + w*m.cols[0][3];
    vector normalize(){
        import std.math;
        auto sqr = (x*x)+(y*y)+(z*z);
        if( sqr != 1.0f ){
            auto srt = sqrt( sqr );
            array[0] /= srt;
            array[1] /= srt;
            array[2] /= srt;
            array[3]  = 1;
        return this;

/// simple matrix class. Matrix values are stored in the array in OpenGL( i.e.; column-major ) order.
class matrix{
    float[16] cols;
    private matrix previous;
    /// allows us to treat the matrix as though it were the array of 16 floats
    alias cols this;
        cols =
            [ 1.0, 0.0, 0.0, 0.0,
              0.0, 1.0, 0.0, 0.0,
              0.0, 0.0, 1.0, 0.0,
              0.0, 0.0, 0.0, 1.0 ];
    this( float[16] vals ){
        cols = vals.dup;
    this( float[4][4] vals ){
        cols = vals[0]~vals[1]~vals[2]~vals[3];
    this( matrix m ){
        cols = m.cols.dup;
    /// returns an identity matrix.
    /// Not difficult, as the identity matrix is the default for the matrix class
    static matrix identity(){
        return new matrix();
    /// operator overloading. Currently only overloads the '*' operator.
    matrix opBinary( string op )( matrix m ){
        matrix r = new matrix;
        At the moment, if the matrices are layed out in the following way;
                               [ t00 t04 t08 t12 ]
                               [ t01 t05 t09 t13 ]
                               [ t02 t06 t10 t14 ]
                               [ t03 t07 t11 t15 ]
        [ m00 m04 m08 m12 ]    [ r00 r04 r08 r12 ]
        [ m01 m05 m09 m13 ]    [ r01 r05 r09 r13 ]
        [ m02 m06 m10 m14 ]    [ r02 r06 r10 r14 ]
        [ m03 m07 m11 m15 ]    [ r03 r07 r11 r15 ]
        where rXX is the resulting value, tXX is the "this" matrix, and mXX is
        the passed-in matrix. If the matrices are messing up, then I may need to
        switch the m and t matrices.
        static if( op == "*" ){
            auto t = cols;
            r[0]  = m[0]*t[0]  + m[4]*t[1]  + m[8]* t[2]  + m[12]*t[3];
            r[1]  = m[1]*t[0]  + m[5]*t[1]  + m[9]* t[2]  + m[13]*t[3];
            r[2]  = m[2]*t[0]  + m[6]*t[1]  + m[10]*t[2]  + m[14]*t[3];
            r[3]  = m[3]*t[0]  + m[7]*t[1]  + m[11]*t[2]  + m[15]*t[3];
            r[4]  = m[0]*t[4]  + m[4]*t[5]  + m[8]* t[6]  + m[12]*t[7];
            r[5]  = m[1]*t[4]  + m[5]*t[5]  + m[9]* t[6]  + m[13]*t[7];
            r[6]  = m[2]*t[4]  + m[6]*t[5]  + m[10]*t[6]  + m[14]*t[7];
            r[7]  = m[3]*t[4]  + m[7]*t[5]  + m[11]*t[6]  + m[15]*t[7];
            r[8]  = m[0]*t[8]  + m[4]*t[9]  + m[8]* t[10] + m[12]*t[11];
            r[9]  = m[1]*t[8]  + m[5]*t[9]  + m[9]* t[10] + m[13]*t[11];
            r[10] = m[2]*t[8]  + m[6]*t[9]  + m[10]*t[10] + m[14]*t[11];
            r[11] = m[3]*t[8]  + m[7]*t[9]  + m[11]*t[10] + m[15]*t[11];
            r[12] = m[0]*t[12] + m[4]*t[13] + m[8]* t[14] + m[12]*t[15];
            r[13] = m[1]*t[12] + m[5]*t[13] + m[9]* t[14] + m[13]*t[15];
            r[14] = m[2]*t[12] + m[6]*t[13] + m[10]*t[14] + m[14]*t[15];
            r[15] = m[3]*t[12] + m[7]*t[13] + m[11]*t[14] + m[15]*t[15];
        else static assert( 0, "Unsupported binary op in math3d.matrix: "~op );
        return r;
    /// utility method to perform a translation on a matrix
    matrix translate( vector v ){
        return translate( v.x, v.y, v.z );
    /// utility method to perform a translation on a matrix
    matrix translate( float x, float y, float z ){
        cols[0] += cols[3]*x;    cols[4] += cols[7]*x;    cols[8] += cols[11]*x;    cols[12] += cols[15]*x;
        cols[1] += cols[3]*y;    cols[5] += cols[7]*y;    cols[9] += cols[11]*y;    cols[13] += cols[15]*y;
        cols[2] += cols[3]*z;    cols[6] += cols[7]*z;    cols[10] += cols[11]*z;    cols[14] += cols[15]*z;
        version(test_matrix) print(this);
        return this;
    /// utility method to perform a rotation on a matrix
    matrix rotate( float angle, vector axis ){
        version(test_matrix) writefln("entered rotate(float, vector(%s))", axis);
        return rotate( angle, axis.x, axis.y, axis.z );
        version(test_matrix) writeln("leaving rotate(float, vector)");
    /// utility method to perform a rotation on a matrix
    matrix rotate( float angle, float x, float y, float z ){
        version(test_matrix) writefln( "entered rotate(%s, %s, %s, %s)", angle, x, y, z );
        matrix m = new matrix;
        version(test_matrix) writeln( "\nmatrix m before construction of rotation" );
        float c = cos(angle*(PI/180.0));
        float s = sin(angle*(PI/180.0));
            writefln( "c: %s\ns: %s\n", c, s );
            writefln( "cos(angle*(PI/180.0)): %s\nsin(angle*(PI/180.0)): %s\n", cos(angle*(PI/180.0)), sin(angle*(PI/180.0)) );
        auto xx = x*x,            xy = x*y,
             xz = x*z,            yy = y*y,
             yz = y*z,            zz = z*z;
        m.cols[0] = xx * (1 - c) + c;
        m.cols[1] = xy * (1 - c) + z * s;
        m.cols[2] = xz * (1 - c) - y * s;
        m.cols[3]= 0;
        m.cols[4] = xy * (1 - c) - z * s;
        m.cols[5] = yy * (1 - c) + c;
        m.cols[6] = yz * (1 - c) + x * s;
        m.cols[7]= 0;
        m.cols[8] = xz * (1 - c) + y * s;
        m.cols[9] = yz * (1 - c) - x * s;
        m.cols[10]= zz * (1 - c) + c;
        m.cols[11]= 0;
        m.cols[12] = 0;
        m.cols[13] = 0;
        m.cols[14]= 0;
        m.cols[15]= 1;
            writeln( "\nmatrix m after rotation created:" );
        cols = ( m*this ).cols;
            writeln( "\nfinal matrix after rotation applied:" );
        version(test_matrix) writeln("leaving rotate(float, float, float, float)");
        return this;
    matrix rotateX( float angle ){
        version(test_matrix) writeln("entered rotateX");
        return rotate( angle, 1.0, 0.0, 0.0 );
    matrix rotateY( float angle ){
        version(test_matrix) writeln("entered rotateY");
        return rotate( angle, 0.0, 1.0, 0.0 );
    matrix rotateZ( float angle ){
        version(test_matrix) writeln("entered rotateX");
        return rotate( angle, 0.0, 0.0, 1.0 );
    /// utility method to scale the matrix
    matrix scale( vector v ){
        return scale( v.x, v.y, v.z );
    matrix scale( float f ){
        return scale( f, f, f );
    matrix scale( float x, float y, float z ){
        cols[0] = cols[0]*x;   cols[1] = cols[1]*x;   cols[2] = cols[2]*x;   cols[3] = cols[3]*x;
        cols[4] = cols[4]*y;   cols[5] = cols[5]*y;   cols[6] = cols[6]*y;   cols[7] = cols[7]*y;
        cols[8] = cols[8]*z;   cols[9] = cols[9]*z;   cols[10]= cols[10]*z;  cols[11]= cols[11]*z;
        return this;

/// replacement for gluPerspective. Matches the parameters and results as accurately as the floats allow
matrix perspective( float fovInDeg, float aspectRatio, float znear, float zfar ){
    float ymax, xmax;
    ymax = znear * tan( fovInDeg * PI / 360.0 );
    xmax = ymax * aspectRatio;
    return frustum( -xmax, xmax, -ymax, ymax, znear, zfar );

/// replacement for glFrustum. Matches the parameters and results as accurately as the floats allow
matrix frustum( float left, float right, float bottom, float top, float znear, float zfar ){
    float t1, t2, t3, t4;
    t1 = 2.0 * znear;
    t2 = right - left;
    t3 = top - bottom;
    t4 = zfar - znear;
    return new matrix(
            t1/t2, 0, 0, 0,
            0, t1/t3, 0, 0,
            (right + left)/t2, (top + bottom)/t3, -(zfar + znear)/t4, -1,
            0, 0, -(t1*zfar)/t4, 0

I hope this helps, and I'd appreciate any help you guys can give me


Share this post

Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  
Followers 0

  • Similar Content

    • By Solid_Spy
      Hello, I have been working on SH Irradiance map rendering, and I have been using a GLSL pixel shader to render SH irradiance to 2D irradiance maps for my static objects. I already have it working with 9 3D textures so far for the first 9 SH functions.
      In my GLSL shader, I have to send in 9 SH Coefficient 3D Texures that use RGBA8 as a pixel format. RGB being used for the coefficients for red, green, and blue, and the A for checking if the voxel is in use (for the 3D texture solidification shader to prevent bleeding).
      My problem is, I want to knock this number of textures down to something like 4 or 5. Getting even lower would be a godsend. This is because I eventually plan on adding more SH Coefficient 3D Textures for other parts of the game map (such as inside rooms, as opposed to the outside), to circumvent irradiance probe bleeding between rooms separated by walls. I don't want to reach the 32 texture limit too soon. Also, I figure that it would be a LOT faster.
      Is there a way I could, say, store 2 sets of SH Coefficients for 2 SH functions inside a texture with RGBA16 pixels? If so, how would I extract them from inside GLSL? Let me know if you have any suggestions ^^.
    • By KarimIO
      EDIT: I thought this was restricted to Attribute-Created GL contexts, but it isn't, so I rewrote the post.
      Hey guys, whenever I call SwapBuffers(hDC), I get a crash, and I get a "Too many posts were made to a semaphore." from Windows as I call SwapBuffers. What could be the cause of this?
      Update: No crash occurs if I don't draw, just clear and swap.
      static PIXELFORMATDESCRIPTOR pfd = // pfd Tells Windows How We Want Things To Be { sizeof(PIXELFORMATDESCRIPTOR), // Size Of This Pixel Format Descriptor 1, // Version Number PFD_DRAW_TO_WINDOW | // Format Must Support Window PFD_SUPPORT_OPENGL | // Format Must Support OpenGL PFD_DOUBLEBUFFER, // Must Support Double Buffering PFD_TYPE_RGBA, // Request An RGBA Format 32, // Select Our Color Depth 0, 0, 0, 0, 0, 0, // Color Bits Ignored 0, // No Alpha Buffer 0, // Shift Bit Ignored 0, // No Accumulation Buffer 0, 0, 0, 0, // Accumulation Bits Ignored 24, // 24Bit Z-Buffer (Depth Buffer) 0, // No Stencil Buffer 0, // No Auxiliary Buffer PFD_MAIN_PLANE, // Main Drawing Layer 0, // Reserved 0, 0, 0 // Layer Masks Ignored }; if (!(hDC = GetDC(windowHandle))) return false; unsigned int PixelFormat; if (!(PixelFormat = ChoosePixelFormat(hDC, &pfd))) return false; if (!SetPixelFormat(hDC, PixelFormat, &pfd)) return false; hRC = wglCreateContext(hDC); if (!hRC) { std::cout << "wglCreateContext Failed!\n"; return false; } if (wglMakeCurrent(hDC, hRC) == NULL) { std::cout << "Make Context Current Second Failed!\n"; return false; } ... // OGL Buffer Initialization glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT); glBindVertexArray(vao); glUseProgram(myprogram); glDrawElements(GL_TRIANGLES, indexCount, GL_UNSIGNED_SHORT, (void *)indexStart); SwapBuffers(GetDC(window_handle));  
    • By Tchom
      Hey devs!
      I've been working on a OpenGL ES 2.0 android engine and I have begun implementing some simple (point) lighting. I had something fairly simple working, so I tried to get fancy and added color-tinting light. And it works great... with only one or two lights. Any more than that, the application drops about 15 frames per light added (my ideal is at least 4 or 5). I know implementing lighting is expensive, I just didn't think it was that expensive. I'm fairly new to the world of OpenGL and GLSL, so there is a good chance I've written some crappy shader code. If anyone had any feedback or tips on how I can optimize this code, please let me know.
      Vertex Shader
      uniform mat4 u_MVPMatrix; uniform mat4 u_MVMatrix; attribute vec4 a_Position; attribute vec3 a_Normal; attribute vec2 a_TexCoordinate; varying vec3 v_Position; varying vec3 v_Normal; varying vec2 v_TexCoordinate; void main() { v_Position = vec3(u_MVMatrix * a_Position); v_TexCoordinate = a_TexCoordinate; v_Normal = vec3(u_MVMatrix * vec4(a_Normal, 0.0)); gl_Position = u_MVPMatrix * a_Position; } Fragment Shader
      precision mediump float; uniform vec4 u_LightPos["+numLights+"]; uniform vec4 u_LightColours["+numLights+"]; uniform float u_LightPower["+numLights+"]; uniform sampler2D u_Texture; varying vec3 v_Position; varying vec3 v_Normal; varying vec2 v_TexCoordinate; void main() { gl_FragColor = (texture2D(u_Texture, v_TexCoordinate)); float diffuse = 0.0; vec4 colourSum = vec4(1.0); for (int i = 0; i < "+numLights+"; i++) { vec3 toPointLight = vec3(u_LightPos[i]); float distance = length(toPointLight - v_Position); vec3 lightVector = normalize(toPointLight - v_Position); float diffuseDiff = 0.0; // The diffuse difference contributed from current light diffuseDiff = max(dot(v_Normal, lightVector), 0.0); diffuseDiff = diffuseDiff * (1.0 / (1.0 + ((1.0-u_LightPower[i])* distance * distance))); //Determine attenuatio diffuse += diffuseDiff; gl_FragColor.rgb *= vec3(1.0) / ((vec3(1.0) + ((vec3(1.0) - vec3(u_LightColours[i]))*diffuseDiff))); //The expensive part } diffuse += 0.1; //Add ambient light gl_FragColor.rgb *= diffuse; } Am I making any rookie mistakes? Or am I just being unrealistic about what I can do? Thanks in advance
    • By yahiko00
      Not sure to post at the right place, if not, please forgive me...
      For a game project I am working on, I would like to implement a 2D starfield as a background.
      I do not want to deal with static tiles, since I plan to slowly animate the starfield. So, I am trying to figure out how to generate a random starfield for the entire map.
      I feel that using a uniform distribution for the stars will not do the trick. Instead I would like something similar to the screenshot below, taken from the game Star Wars: Empire At War (all credits to Lucasfilm, Disney, and so on...).

      Is there someone who could have an idea of a distribution which could result in such a starfield?
      Any insight would be appreciated
    • By afraidofdark
      I have just noticed that, in quake 3 and half - life, dynamic models are effected from light map. For example in dark areas, gun that player holds seems darker. How did they achieve this effect ? I can use image based lighting techniques however (Like placing an environment probe and using it for reflections and ambient lighting), this tech wasn't used in games back then, so there must be a simpler method to do this.
      Here is a link that shows how modern engines does it. Indirect Lighting Cache It would be nice if you know a paper that explains this technique. Can I apply this to quake 3' s light map generator and bsp format ?
  • Popular Now