• Announcements

    • khawk

      Download the Game Design and Indie Game Marketing Freebook   07/19/17

      GameDev.net and CRC Press have teamed up to bring a free ebook of content curated from top titles published by CRC Press. The freebook, Practices of Game Design & Indie Game Marketing, includes chapters from The Art of Game Design: A Book of Lenses, A Practical Guide to Indie Game Marketing, and An Architectural Approach to Level Design. The GameDev.net FreeBook is relevant to game designers, developers, and those interested in learning more about the challenges in game development. We know game development can be a tough discipline and business, so we picked several chapters from CRC Press titles that we thought would be of interest to you, the GameDev.net audience, in your journey to design, develop, and market your next game. The free ebook is available through CRC Press by clicking here. The Curated Books The Art of Game Design: A Book of Lenses, Second Edition, by Jesse Schell Presents 100+ sets of questions, or different lenses, for viewing a game’s design, encompassing diverse fields such as psychology, architecture, music, film, software engineering, theme park design, mathematics, anthropology, and more. Written by one of the world's top game designers, this book describes the deepest and most fundamental principles of game design, demonstrating how tactics used in board, card, and athletic games also work in video games. It provides practical instruction on creating world-class games that will be played again and again. View it here. A Practical Guide to Indie Game Marketing, by Joel Dreskin Marketing is an essential but too frequently overlooked or minimized component of the release plan for indie games. A Practical Guide to Indie Game Marketing provides you with the tools needed to build visibility and sell your indie games. With special focus on those developers with small budgets and limited staff and resources, this book is packed with tangible recommendations and techniques that you can put to use immediately. As a seasoned professional of the indie game arena, author Joel Dreskin gives you insight into practical, real-world experiences of marketing numerous successful games and also provides stories of the failures. View it here. An Architectural Approach to Level Design This is one of the first books to integrate architectural and spatial design theory with the field of level design. The book presents architectural techniques and theories for level designers to use in their own work. It connects architecture and level design in different ways that address the practical elements of how designers construct space and the experiential elements of how and why humans interact with this space. Throughout the text, readers learn skills for spatial layout, evoking emotion through gamespaces, and creating better levels through architectural theory. View it here. Learn more and download the ebook by clicking here. Did you know? GameDev.net and CRC Press also recently teamed up to bring GDNet+ Members up to a 20% discount on all CRC Press books. Learn more about this and other benefits here.
Sign in to follow this  
Followers 0
blutzeit

OpenGL
Cel-shaded terrain and performance on iOS / OpenGL ES 2.0

11 posts in this topic

I'm experimenting with full screen terrain rendering on the iPad, using a cel shader that goes something like this:

1) render the terrain unto screen with cel lighting

2) render the depth only into a texture

3) render this texture unto the screen using a sobel filter

 

The performance of step 1 alone is currently adequate (although I haven't started optimize it yet). But I'm having a little trouble getting good performance when all passes are combined. The depth buffer is apparently rendered twice, which seems unnecessary. Is there any way to combine these passes, or otherwise optimize this approach?

 

[attachment=13699:Landscape.jpg]

0

Share this post


Link to post
Share on other sites

Don't know what is supported by OGL ES (multiple render targets ? read depth texture ? etc.) Atleast you could try to write the linear depth into the alpha channel in the first path. 8 bit is not the best resolution, but it could be enough for this kind of low-detail terrain.

2

Share this post


Link to post
Share on other sites

On iPad 2 and later, there is some kind of depth texture format, I am not sure, but I think you can attach it as your framebuffers depth texture target.

I would however expect the outline fullscreen shader to be the bottleneck in your case. So whatever calculations you do on the texture coordinates, do them in your vertex shader and in most cases you should unroll your loops.

0

Share this post


Link to post
Share on other sites

output the depth into the alpha channel, it's not very accurate, but enough for your filter.

 

as an optimization for your current 3 phases, swap 1 and 2. it's beneficial, especially on mobile devices, to render one screen in one go, instead of switching from it to a temporary and back, as your GPU needs to store and restore the framebuffer into internal caches. doing it in one go means 67% traffic saving (just one write, instead of write, read, write).

2

Share this post


Link to post
Share on other sites

The depth buffer is apparently rendered twice

Because it is already written during pass #1, which makes pass #2 completely superfluous. Just get rid of it.

Additionally, PowerVR chips are different from desktop cards and suffer from fill-rate more than desktops do, so eliminating pass #2 will help a lot, but it also suffers from dependent texture reads more-so than desktop cards do, so as was mentioned by _Slin_ you will want to avoid dependent texture reads (refer to IMAGINE TECHNOLOGY’s documentation) by calculating the texture coordinates you need for your sobel filter in the vertex shader, storing them in only the X and Y of the vectors you pass to the fragment shaders, and in the fragment shaders use those coordinates as-is without modifying them at all.


L. Spiro
1

Share this post


Link to post
Share on other sites

Thanks for the tips, I've eliminated dependent texture reads, and will continue to experiment with alpha channels.

 

I didn't mention it, but there's a fourth pass where I render the trees using point sprites, which makes it harder to get rid of pass 2. Or is there any way to share the same depth buffer with both screen rendering and the sobel filter that I miss?

0

Share this post


Link to post
Share on other sites

Yes.  Set it as the depth buffer for pass #4 (which doesn’t exist since #2 was removed, so it would be pass #3).

 

 

L. Spiro

0

Share this post


Link to post
Share on other sites

I managed to get this to work by a lot of optimizing, basically using the original setup.

- Going from sobel to cross filter for faster edge fragment shader (half the number of texture reads). Not as pretty but OK in this context.

- I was sloppily using a lot of fragment discards in many shaders, now I only do a few edge triangles in a special shader.

- Lots of small tweaks as suggested above and in the imgtec document.

 

I didn't use the alpha channel for the depth buffer, it seemed to produce artifacts, and I didn't notice any performance gain (although I'm not sure I did it right). I guess I could do more research to see if this is feasible some how, but the frame rate is ok now so I'm leaving it as a future to-do item.

2

Share this post


Link to post
Share on other sites

Still looks pretty darn good to me.  Tbh, I think that this would make a very interesting and educational article.  I often thought about how iOS would handle multiple rendering passes and post processing effects and now I feel encouraged to experiment for myself.

 

I do have a question for you, are you using any CPU based optimizations for your game for your post processing effects or is it all GPU/shader based?  Sorry if I'm missing something obvious.

 

Shogun.

0

Share this post


Link to post
Share on other sites

It's mainly GPU-based. E.g. I kept moving color/shadow calculations up the chain, and ended up pre-calculating a color-lookup texture, so that the vertex shader does simple normal calculations and feeds the resulting brightness value to the fragment shader to use as color texture coordinate + simple step-based shadow. I'm maybe sacrificing physical realism, but as realistic rendering is not my goal, this isn't an issue.

 

For the discard optimization, I keep two vertex buffers, one for triangles that has fragments that are to be discarded, and one for all-visible fragments. Here it's the CPU that decides for each triangle which buffer it goes into. The buffers are static, so this is done during level load time.

 

As for the edge-filter-pass, it's too much for the original iPad to handle, so it's only used on newer if your running on a newer iPad.

Edited by Felix Ungman
0

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!


Register a new account

Sign in

Already have an account? Sign in here.


Sign In Now
Sign in to follow this  
Followers 0

  • Similar Content

    • By Toastmastern
      So it's been a while since I took a break from my whole creating a planet in DX11. Last time around I got stuck on fixing a nice LOD.
      A week back or so I got help to find this:
      https://github.com/sp4cerat/Planet-LOD
      In general this is what I'm trying to recreate in DX11, he that made that planet LOD uses OpenGL but that is a minor issue and something I can solve. But I have a question regarding the code
      He gets the position using this row
      vec4d pos = b.var.vec4d["position"]; Which is then used further down when he sends the variable "center" into the drawing function:
      if (pos.len() < 1) pos.norm(); world::draw(vec3d(pos.x, pos.y, pos.z));  
      Inside the draw function this happens:
      draw_recursive(p3[0], p3[1], p3[2], center); Basically the 3 vertices of the triangle and the center of details that he sent as a parameter earlier: vec3d(pos.x, pos.y, pos.z)
      Now onto my real question, he does vec3d edge_center[3] = { (p1 + p2) / 2, (p2 + p3) / 2, (p3 + p1) / 2 }; to get the edge center of each edge, nothing weird there.
      But this is used later on with:
      vec3d d = center + edge_center[i]; edge_test[i] = d.len() > ratio_size; edge_test is then used to evaluate if there should be a triangle drawn or if it should be split up into 3 new triangles instead. Why is it working for him? shouldn't it be like center - edge_center or something like that? Why adding them togheter? I asume here that the center is the center of details for the LOD. the position of the camera if stood on the ground of the planet and not up int he air like it is now.

      Full code can be seen here:
      https://github.com/sp4cerat/Planet-LOD/blob/master/src.simple/Main.cpp
      If anyone would like to take a look and try to help me understand this code I would love this person. I'm running out of ideas on how to solve this in my own head, most likely twisted it one time to many up in my head
      Thanks in advance
      Toastmastern
       
       
    • By fllwr0491
      I googled around but are unable to find source code or details of implementation.
      What keywords should I search for this topic?
      Things I would like to know:
      A. How to ensure that partially covered pixels are rasterized?
         Apparently by expanding each triangle by 1 pixel or so, rasterization problem is almost solved.
         But it will result in an unindexable triangle list without tons of overlaps. Will it incur a large performance penalty?
      B. A-buffer like bitmask needs a read-modiry-write operation.
         How to ensure proper synchronizations in GLSL?
         GLSL seems to only allow int32 atomics on image.
      C. Is there some simple ways to estimate coverage on-the-fly?
         In case I am to draw 2D shapes onto an exisitng target:
         1. A multi-pass whatever-buffer seems overkill.
         2. Multisampling could cost a lot memory though all I need is better coverage.
            Besides, I have to blit twice, if draw target is not multisampled.
       
    • By mapra99
      Hello

      I am working on a recent project and I have been learning how to code in C# using OpenGL libraries for some graphics. I have achieved some quite interesting things using TAO Framework writing in Console Applications, creating a GLUT Window. But my problem now is that I need to incorporate the Graphics in a Windows Form so I can relate the objects that I render with some .NET Controls.

      To deal with this problem, I have seen in some forums that it's better to use OpenTK instead of TAO Framework, so I can use the glControl that OpenTK libraries offer. However, I haven't found complete articles, tutorials or source codes that help using the glControl or that may insert me into de OpenTK functions. Would somebody please share in this forum some links or files where I can find good documentation about this topic? Or may I use another library different of OpenTK?

      Thanks!
    • By Solid_Spy
      Hello, I have been working on SH Irradiance map rendering, and I have been using a GLSL pixel shader to render SH irradiance to 2D irradiance maps for my static objects. I already have it working with 9 3D textures so far for the first 9 SH functions.
      In my GLSL shader, I have to send in 9 SH Coefficient 3D Texures that use RGBA8 as a pixel format. RGB being used for the coefficients for red, green, and blue, and the A for checking if the voxel is in use (for the 3D texture solidification shader to prevent bleeding).
      My problem is, I want to knock this number of textures down to something like 4 or 5. Getting even lower would be a godsend. This is because I eventually plan on adding more SH Coefficient 3D Textures for other parts of the game map (such as inside rooms, as opposed to the outside), to circumvent irradiance probe bleeding between rooms separated by walls. I don't want to reach the 32 texture limit too soon. Also, I figure that it would be a LOT faster.
      Is there a way I could, say, store 2 sets of SH Coefficients for 2 SH functions inside a texture with RGBA16 pixels? If so, how would I extract them from inside GLSL? Let me know if you have any suggestions ^^.
    • By KarimIO
      EDIT: I thought this was restricted to Attribute-Created GL contexts, but it isn't, so I rewrote the post.
      Hey guys, whenever I call SwapBuffers(hDC), I get a crash, and I get a "Too many posts were made to a semaphore." from Windows as I call SwapBuffers. What could be the cause of this?
      Update: No crash occurs if I don't draw, just clear and swap.
      static PIXELFORMATDESCRIPTOR pfd = // pfd Tells Windows How We Want Things To Be { sizeof(PIXELFORMATDESCRIPTOR), // Size Of This Pixel Format Descriptor 1, // Version Number PFD_DRAW_TO_WINDOW | // Format Must Support Window PFD_SUPPORT_OPENGL | // Format Must Support OpenGL PFD_DOUBLEBUFFER, // Must Support Double Buffering PFD_TYPE_RGBA, // Request An RGBA Format 32, // Select Our Color Depth 0, 0, 0, 0, 0, 0, // Color Bits Ignored 0, // No Alpha Buffer 0, // Shift Bit Ignored 0, // No Accumulation Buffer 0, 0, 0, 0, // Accumulation Bits Ignored 24, // 24Bit Z-Buffer (Depth Buffer) 0, // No Stencil Buffer 0, // No Auxiliary Buffer PFD_MAIN_PLANE, // Main Drawing Layer 0, // Reserved 0, 0, 0 // Layer Masks Ignored }; if (!(hDC = GetDC(windowHandle))) return false; unsigned int PixelFormat; if (!(PixelFormat = ChoosePixelFormat(hDC, &pfd))) return false; if (!SetPixelFormat(hDC, PixelFormat, &pfd)) return false; hRC = wglCreateContext(hDC); if (!hRC) { std::cout << "wglCreateContext Failed!\n"; return false; } if (wglMakeCurrent(hDC, hRC) == NULL) { std::cout << "Make Context Current Second Failed!\n"; return false; } ... // OGL Buffer Initialization glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT); glBindVertexArray(vao); glUseProgram(myprogram); glDrawElements(GL_TRIANGLES, indexCount, GL_UNSIGNED_SHORT, (void *)indexStart); SwapBuffers(GetDC(window_handle));  
  • Popular Now