• Advertisement
  • Popular Tags

  • Popular Now

  • Advertisement
  • Similar Content

    • By racarate
      Hey everybody!
      I am trying to replicate all these cool on-screen debug visuals I see in all the SIGGRAPH and GDC talks, but I really don't know where to start.  The only resource I know of is almost 16 years old:
      http://number-none.com/product/Interactive Profiling, Part 1/index.html
      Does anybody have a more up-to-date reference?  Do people use minimal UI libraries like Dear ImgGui?  Also, If I am profiling OpenGL ES 3.0 (which doesn't have timer queries) is there really anything I can do to measure performance GPU-wise?  Or should I just chart CPU-side frame time?  I feel like this is something people re-invent for every game there has gotta be a tutorial out there... right?
       
       
    • By Achivai
      Hey, I am semi-new to 3d-programming and I've hit a snag. I have one object, let's call it Object A. This object has a long int array of 3d xyz-positions stored in it's vbo as an instanced attribute. I am using these numbers to instance object A a couple of thousand times. So far so good. 
      Now I've hit a point where I want to remove one of these instances of object A while the game is running, but I'm not quite sure how to go about it. At first my thought was to update the instanced attribute of Object A and change the positions to some dummy number that I could catch in the vertex shader and then decide there whether to draw the instance of Object A or not, but I think that would be expensive to do while the game is running, considering that it might have to be done several times every frame in some cases. 
      I'm not sure how to proceed, anyone have any tips?
    • By fleissi
      Hey guys!

      I'm new here and I recently started developing my own rendering engine. It's open source, based on OpenGL/DirectX and C++.
      The full source code is hosted on github:
      https://github.com/fleissna/flyEngine

      I would appreciate if people with experience in game development / engine desgin could take a look at my source code. I'm looking for honest, constructive criticism on how to improve the engine.
      I'm currently writing my master's thesis in computer science and in the recent year I've gone through all the basics about graphics programming, learned DirectX and OpenGL, read some articles on Nvidia GPU Gems, read books and integrated some of this stuff step by step into the engine.

      I know about the basics, but I feel like there is some missing link that I didn't get yet to merge all those little pieces together.

      Features I have so far:
      - Dynamic shader generation based on material properties
      - Dynamic sorting of meshes to be renderd based on shader and material
      - Rendering large amounts of static meshes
      - Hierarchical culling (detail + view frustum)
      - Limited support for dynamic (i.e. moving) meshes
      - Normal, Parallax and Relief Mapping implementations
      - Wind animations based on vertex displacement
      - A very basic integration of the Bullet physics engine
      - Procedural Grass generation
      - Some post processing effects (Depth of Field, Light Volumes, Screen Space Reflections, God Rays)
      - Caching mechanisms for textures, shaders, materials and meshes

      Features I would like to have:
      - Global illumination methods
      - Scalable physics
      - Occlusion culling
      - A nice procedural terrain generator
      - Scripting
      - Level Editing
      - Sound system
      - Optimization techniques

      Books I have so far:
      - Real-Time Rendering Third Edition
      - 3D Game Programming with DirectX 11
      - Vulkan Cookbook (not started yet)

      I hope you guys can take a look at my source code and if you're really motivated, feel free to contribute :-)
      There are some videos on youtube that demonstrate some of the features:
      Procedural grass on the GPU
      Procedural Terrain Engine
      Quadtree detail and view frustum culling

      The long term goal is to turn this into a commercial game engine. I'm aware that this is a very ambitious goal, but I'm sure it's possible if you work hard for it.

      Bye,

      Phil
    • By tj8146
      I have attached my project in a .zip file if you wish to run it for yourself.
      I am making a simple 2d top-down game and I am trying to run my code to see if my window creation is working and to see if my timer is also working with it. Every time I run it though I get errors. And when I fix those errors, more come, then the same errors keep appearing. I end up just going round in circles.  Is there anyone who could help with this? 
       
      Errors when I build my code:
      1>Renderer.cpp 1>c:\users\documents\opengl\game\game\renderer.h(15): error C2039: 'string': is not a member of 'std' 1>c:\program files (x86)\windows kits\10\include\10.0.16299.0\ucrt\stddef.h(18): note: see declaration of 'std' 1>c:\users\documents\opengl\game\game\renderer.h(15): error C2061: syntax error: identifier 'string' 1>c:\users\documents\opengl\game\game\renderer.cpp(28): error C2511: 'bool Game::Rendering::initialize(int,int,bool,std::string)': overloaded member function not found in 'Game::Rendering' 1>c:\users\documents\opengl\game\game\renderer.h(9): note: see declaration of 'Game::Rendering' 1>c:\users\documents\opengl\game\game\renderer.cpp(35): error C2597: illegal reference to non-static member 'Game::Rendering::window' 1>c:\users\documents\opengl\game\game\renderer.cpp(36): error C2597: illegal reference to non-static member 'Game::Rendering::window' 1>c:\users\documents\opengl\game\game\renderer.cpp(43): error C2597: illegal reference to non-static member 'Game::Rendering::window' 1>Done building project "Game.vcxproj" -- FAILED. ========== Build: 0 succeeded, 1 failed, 0 up-to-date, 0 skipped ==========  
       
      Renderer.cpp
      #include <GL/glew.h> #include <GLFW/glfw3.h> #include "Renderer.h" #include "Timer.h" #include <iostream> namespace Game { GLFWwindow* window; /* Initialize the library */ Rendering::Rendering() { mClock = new Clock; } Rendering::~Rendering() { shutdown(); } bool Rendering::initialize(uint width, uint height, bool fullscreen, std::string window_title) { if (!glfwInit()) { return -1; } /* Create a windowed mode window and its OpenGL context */ window = glfwCreateWindow(640, 480, "Hello World", NULL, NULL); if (!window) { glfwTerminate(); return -1; } /* Make the window's context current */ glfwMakeContextCurrent(window); glViewport(0, 0, (GLsizei)width, (GLsizei)height); glOrtho(0, (GLsizei)width, (GLsizei)height, 0, 1, -1); glMatrixMode(GL_PROJECTION); glLoadIdentity(); glfwSwapInterval(1); glEnable(GL_SMOOTH); glEnable(GL_DEPTH_TEST); glEnable(GL_BLEND); glDepthFunc(GL_LEQUAL); glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); glEnable(GL_TEXTURE_2D); glLoadIdentity(); return true; } bool Rendering::render() { /* Loop until the user closes the window */ if (!glfwWindowShouldClose(window)) return false; /* Render here */ mClock->reset(); glfwPollEvents(); if (mClock->step()) { glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glfwSwapBuffers(window); mClock->update(); } return true; } void Rendering::shutdown() { glfwDestroyWindow(window); glfwTerminate(); } GLFWwindow* Rendering::getCurrentWindow() { return window; } } Renderer.h
      #pragma once namespace Game { class Clock; class Rendering { public: Rendering(); ~Rendering(); bool initialize(uint width, uint height, bool fullscreen, std::string window_title = "Rendering window"); void shutdown(); bool render(); GLFWwindow* getCurrentWindow(); private: GLFWwindow * window; Clock* mClock; }; } Timer.cpp
      #include <GL/glew.h> #include <GLFW/glfw3.h> #include <time.h> #include "Timer.h" namespace Game { Clock::Clock() : mTicksPerSecond(50), mSkipTics(1000 / mTicksPerSecond), mMaxFrameSkip(10), mLoops(0) { mLastTick = tick(); } Clock::~Clock() { } bool Clock::step() { if (tick() > mLastTick && mLoops < mMaxFrameSkip) return true; return false; } void Clock::reset() { mLoops = 0; } void Clock::update() { mLastTick += mSkipTics; mLoops++; } clock_t Clock::tick() { return clock(); } } TImer.h
      #pragma once #include "Common.h" namespace Game { class Clock { public: Clock(); ~Clock(); void update(); bool step(); void reset(); clock_t tick(); private: uint mTicksPerSecond; ufloat mSkipTics; uint mMaxFrameSkip; uint mLoops; uint mLastTick; }; } Common.h
      #pragma once #include <cstdio> #include <cstdlib> #include <ctime> #include <cstring> #include <cmath> #include <iostream> namespace Game { typedef unsigned char uchar; typedef unsigned short ushort; typedef unsigned int uint; typedef unsigned long ulong; typedef float ufloat; }  
      Game.zip
    • By lxjk
      Hi guys,
      There are many ways to do light culling in tile-based shading. I've been playing with this idea for a while, and just want to throw it out there.
      Because tile frustums are general small compared to light radius, I tried using cone test to reduce false positives introduced by commonly used sphere-frustum test.
      On top of that, I use distance to camera rather than depth for near/far test (aka. sliced by spheres).
      This method can be naturally extended to clustered light culling as well.
      The following image shows the general ideas

       
      Performance-wise I get around 15% improvement over sphere-frustum test. You can also see how a single light performs as the following: from left to right (1) standard rendering of a point light; then tiles passed the test of (2) sphere-frustum test; (3) cone test; (4) spherical-sliced cone test
       

       
      I put the details in my blog post (https://lxjk.github.io/2018/03/25/Improve-Tile-based-Light-Culling-with-Spherical-sliced-Cone.html), GLSL source code included!
       
      Eric
  • Advertisement
  • Advertisement
Sign in to follow this  

OpenGL glreadpixels don't work

This topic is 1890 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

If you intended to correct an error in the post then please contact us.

Recommended Posts

Hi All,

 

I'm just trying to feed a cvMat a texture that is generated by
fragment shader, there is nothing appears on the screen, I don't know
where is the problem, is this in the driver or glreadPixels.. I just
loaded a TGA Image, to a fragment shader, then textured a quad, I wanted
to feed that texture to a cvMat, so I used glReadPixesl then genereated
a new texture, and drew it on the quad, but nothing appears.

 

The setup is on OpenGLES on Exynos, Mali400 GPU
 

Kindly note that the following code is executed at each frame.

 

glEnableVertexAttribArray( userData->positionloc);
glEnableVertexAttribArray( userData->texCoordLoc);

// use Fragment Shader Texture
glActivateTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE2D, userData->baseMapTexId);


// try to store it into cvMat or GLByte
cv::Mat pixels;
glPixelStorei(GL_PACK_ALIGNMENT, (pixels.step & 3) ? 1 : 4);
glReadPixels(0, 0, 1024, 1024, GL_RGB, GL_UNSIGNED_BYTE, pixels.data);

glEnable(GL_TEXTURE_2D);
GLuint textureID;
glGenTextures(1, &textureID);
 
// Create the texture
glTexImage2D(GL_TEXTURE_2D, // Type of texture
0, // Pyramid level (for mip-mapping) - 0 is the top level
GL_RGB, // Internal colour format to convert to
1024, // Image width i.e. 640 for Kinect in standard mode
1024, // Image height i.e. 480 for Kinect in standard mode
0, // Border width in pixels (can either be 1 or 0)
GL_RGB, // Input image format (i.e. GL_RGB, GL_RGBA, GL_BGR etc.)
GL_UNSIGNED_BYTE, // Image data type
pixels.data); // The actual image data itself

// try to draw that stored texture into a quad
glActiveTexture ( textureID );
glBindTexture ( GL_TEXTURE_2D,textureID );
glDrawElements ( GL_TRIANGLES, 6, GL_UNSIGNED_SHORT, indices );
 
Edited by AhmedCoeia

Share this post


Link to post
Share on other sites
Advertisement

Don't you have to specify the size and the format of the image before passing its pointer to glReadPixels, or does the cv::Mat class default constructor allocate enough storage space to acomodate a 1024x1024 RGB image? Also, if you're creating a new texture object, then you need to set the minification filter to a non-mipmap filter or generate all mipmap levels, or you will have an incomplete texture object.

Share this post


Link to post
Share on other sites

Thanks for your reply.

I don't need to specify the size of the cvMat.The default constructor allocates enough space.

I will set the manification filter. Don't you see any other problem ?  I write to write glreadpixels to a file, it only writes when it is specified as GLRGBA, and doesnt work with GLRGB...

Is the shader is a problem ? Should I disable it before glreadpixesl ?

Share this post


Link to post
Share on other sites

Thanks for your reply.

I don't need to specify the size of the cvMat.The default constructor allocates enough space.

I will set the manification filter. Don't you see any other problem ?

I don't see anything obvious, no.

I write to write glreadpixels to a file, it only writes when it is specified as GLRGBA, and doesnt work with GLRGB...

Is the shader is a problem ? Should I disable it before glreadpixesl ?

The shaders do not affect glReadPixels.

Share this post


Link to post
Share on other sites

Check your current glReadBuffer.  Also, if you've a single-buffered context you may need a glFlush before reading (although glReadPixels implies a sync but it may be a driver bug so worth checking).

 

While we're on the subject, this is slow:

glReadPixels(0, 0, 1024, 1024, GL_RGB, GL_UNSIGNED_BYTE, pixels.data);

And this is fast:

glReadPixels(0, 0, 1024, 1024, GL_BGRA, GL_UNSIGNED_INT_8_8_8_8_REV, pixels.data);

The reason why is because the slow version requires a software conversion step from your native framebuffer format to the format you specify; using the same format for both avoids that conversion.

Share this post


Link to post
Share on other sites

From the link I provided:

 

Associated Gets

glGet with argument GL_READ_BUFFER

 

Follow the "glGet" link and search for GL_READ_BUFFER and we find:

 

params returns one value, a symbolic constant indicating which color buffer is selected for reading. The initial value is GL_BACK if there is a back buffer, otherwise it is GL_FRONT.

 

Because we know that the read buffer is specified by a GLenum, and because we've read the documentation we know that a GLenum is just an integer, the code for it is:

 

// ensure that our read buffer is GL_BACK
GLenum currentReadBuffer;
glGetIntegerv (GL_READ_BUFFER, &currentReadBuffer);
if (currentReadBuffer != GL_BACK) glReadBuffer (GL_BACK);

 

Incidentally, if the only reason you want to read back the data is to transfer it to a texture, consider using (preferably) an FBO or (alternatively) glCopyTexImage2D or glCopyTexSubImage2D.  Either way will put the data into a texture directly on the GPU without needing a round-trip to-and-from system memory beforehand.

 

Also, you're not calling glBindTexture before your glTexImage2D in your code.  Not to mention generating a brand-new texture object each frame.  I'd suggest after all this that you may get more benefit from jumping back to more basic tutorial work instead of trying anything too fancy right now, because your approach appears to be one of hacking-and-slashing at code rather than working to understand what's actually happening and what you actually need to do.

Share this post


Link to post
Share on other sites
Sign in to follow this  

  • Advertisement