Sign in to follow this  
TheChubu

OpenGL Organizing mesh and buffer classes

Recommended Posts

TheChubu    9454

Hi. So far I have this thing that can render a heightmap with per-vertex color and per-vertex shading (huzzah for next-gen graphics!).

 

The thing is that the GL class I did is tailored to render that specific heightmap and nothing else, so my next step would be refactor it so it can render several objects (and maybe several program objects), but i'm at a loss about how should I set up my mesh class, how to handle the resulting mesh objects and how to relate them to their VBOs and such.

 

Currently DataMesh holds an array of floats with the already processed (interleaved color,normal,position) data and a FloatBuffer for passing the data to OpenGL (perils of Java Native Interface) but I have to set up something else that connects the mesh with the OpenGL specific things, ie, Vertex Array Objects, Vertex Buffer Object and shaders going to be used to render that mesh.

 

What should I store in my mesh class? It is ok to store API specific things on it? (ie, VBO id, maybe shader Ids that it uses) Or it should I set up some manager to do that thing? In which case, how would that manager operate? What data it would contain? When generating vbos, there is a "generic" way to handle attribute pointers? Or I should make a method for each possible vbo configuration? (ie, one method for vertex + color, another for vertex + color + normal, another for vertex + normal + texture coords, etc).

 

On an unrelated note, it is okay to assume that every vertex passed will always have its w component equal to 1.0f?

Share this post


Link to post
Share on other sites
Promit    13246

For me, a Mesh is essentially a VAO, plus some parameters for topology (triangle lists, strips etc) and offsets. It's composed from vertex buffers, an index buffer, and a "vertex declaration" (D3D9 terminology) slash "input layout" (D3D10+ terminology). It's essentially an array of the data that you wind up passing as VertexAttribPointer. Tends to look like this:

 

struct VertexElement{
    unsigned int Index;
    int Size;
    int Type;
    unsigned int Stride;
    unsigned int Offset;
    class GraphicsBuffer* Buffer;
    unsigned int Divisor;
};
   
 VertexElement ve[] = {
        { VE_Position, 3, GL_FLOAT, sizeof(SimpleVertex), offsetof(SimpleVertex, position), rawVb },
        { VE_TexCoord, 2, GL_FLOAT, sizeof(SimpleVertex), offsetof(SimpleVertex, texcoord), rawVb },
        { VE_Diffuse, 4, GL_FLOAT, sizeof(SimpleVertex), offsetof(SimpleVertex, color), rawVb },
    };
 
 

That plus an index buffer is enough information to recompose the relevant GL calls to create a VAO. Each of these things gets paired with a material and a few other things (bounding volumes for example) and away we go.

Edited by Promit

Share this post


Link to post
Share on other sites
Jason Z    6436

For me, a Mesh is essentially a VAO, plus some parameters for topology (triangle lists, strips etc) and offsets. It's composed from vertex buffers, an index buffer, and a "vertex declaration" (D3D9 terminology) slash "input layout" (D3D10+ terminology). It's essentially an array of the data that you wind up passing as VertexAttribPointer. Tends to look like this:

 

struct VertexElement{
    unsigned int Index;
    int Size;
    int Type;
    unsigned int Stride;
    unsigned int Offset;
    class GraphicsBuffer* Buffer;
    unsigned int Divisor;
};
   
 VertexElement ve[] = {
        { VE_Position, 3, GL_FLOAT, sizeof(SimpleVertex), offsetof(SimpleVertex, position), rawVb },
        { VE_TexCoord, 2, GL_FLOAT, sizeof(SimpleVertex), offsetof(SimpleVertex, texcoord), rawVb },
        { VE_Diffuse, 4, GL_FLOAT, sizeof(SimpleVertex), offsetof(SimpleVertex, color), rawVb },
    };
 
 

That plus an index buffer is enough information to recompose the relevant GL calls to create a VAO. Each of these things gets paired with a material and a few other things (bounding volumes for example) and away we go.

 

I agree with this, plus over the past year or so I have actually started including the type of draw call with the 'geometry' type classes in my engine.  This allows you the freedom to use whatever pipeline execution method makes the most sense (i.e. indexed or not, instanced or not, etc...) for that geometry class.  In general, I consider any inputs into the pipeline that are used for vertex assembly to be part of the geometry, along with a method for configuring those inputs and executing the draw call.

 

That keeps everything in a nice clean package, fully encapsulating the concept of a mesh.

Share this post


Link to post
Share on other sites
Jason Z    6436

That is what I normally do - just expand the R3 based vertex to R4 in the vertex shader when I do the multiply.  That coordinate is only there to allow you to do perspective projection, so you can use it as you see fit with your projection matrices.  If you don't need to do projection, then you don't even need the w-value at all and can just set it to 1 in the output vertex position.

 

The only time I have heard of not setting it to 1 is to perform a cheap scaling of the vertex position.  If you set the w value to be something other than 1, then when the rasterizer does the w divide then it will scale the position.  That isn't really necessary in most cases, so I would say that you can safely assume w=1 in most cases.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

Sign in to follow this  

  • Partner Spotlight

  • Similar Content

    • By pseudomarvin
      I assumed that if a shader is computationally expensive then the execution is just slower. But running the following GLSL FS instead just crashes
      void main() { float x = 0; float y = 0; int sum = 0; for (float x = 0; x < 10; x += 0.00005) { for (float y = 0; y < 10; y += 0.00005) { sum++; } } fragColor = vec4(1, 1, 1 , 1.0); } with unhandled exception in nvoglv32.dll. Are there any hard limits on the number of steps/time that a shader can take before it is shut down? I was thinking about implementing some time intensive computation in shaders where it would take on the order of seconds to compute a frame, is that possible? Thanks.
    • By Arulbabu Donbosco
      There are studios selling applications which is just copying any 3Dgraphic content and regenerating into another new window. especially for CAVE Virtual reality experience. so that the user opens REvite or CAD or any other 3D applications and opens a model. then when the user selects the rendered window the VR application copies the 3D model information from the OpenGL window. 
      I got the clue that the VR application replaces the windows opengl32.dll file. how this is possible ... how can we copy the 3d content from the current OpenGL window.
      anyone, please help me .. how to go further... to create an application like VR CAVE. 
       
      Thanks
    • By cebugdev
      hi all,

      i am trying to build an OpenGL 2D GUI system, (yeah yeah, i know i should not be re inventing the wheel, but this is for educational and some other purpose only),
      i have built GUI system before using 2D systems such as that of HTML/JS canvas, but in 2D system, i can directly match a mouse coordinates to the actual graphic coordinates with additional computation for screen size/ratio/scale ofcourse.
      now i want to port it to OpenGL, i know that to render a 2D object in OpenGL we specify coordiantes in Clip space or use the orthographic projection, now heres what i need help about.
      1. what is the right way of rendering the GUI? is it thru drawing in clip space or switching to ortho projection?
      2. from screen coordinates (top left is 0,0 nd bottom right is width height), how can i map the mouse coordinates to OpenGL 2D so that mouse events such as button click works? In consideration ofcourse to the current screen/size dimension.
      3. when let say if the screen size/dimension is different, how to handle this? in my previous javascript 2D engine using canvas, i just have my working coordinates and then just perform the bitblk or copying my working canvas to screen canvas and scale the mouse coordinates from there, in OpenGL how to work on a multiple screen sizes (more like an OpenGL ES question).
      lastly, if you guys know any books, resources, links or tutorials that handle or discuss this, i found one with marekknows opengl game engine website but its not free,
      Just let me know. Did not have any luck finding resource in google for writing our own OpenGL GUI framework.
      IF there are no any available online, just let me know, what things do i need to look into for OpenGL and i will study them one by one to make it work.
      thank you, and looking forward to positive replies.
    • By fllwr0491
      I have a few beginner questions about tesselation that I really have no clue.
      The opengl wiki doesn't seem to talk anything about the details.
       
      What is the relationship between TCS layout out and TES layout in?
      How does the tesselator know how control points are organized?
          e.g. If TES input requests triangles, but TCS can output N vertices.
             What happens in this case?
      In this article,
      http://www.informit.com/articles/article.aspx?p=2120983
      the isoline example TCS out=4, but TES in=isoline.
      And gl_TessCoord is only a single one.
      So which ones are the control points?
      How are tesselator building primitives?
    • By Orella
      I've been developing a 2D Engine using SFML + ImGui.
      Here you can see an image
      The editor is rendered using ImGui and the scene window is a sf::RenderTexture where I draw the GameObjects and then is converted to ImGui::Image to render it in the editor.
      Now I need to create a 3D Engine during this year in my Bachelor Degree but using SDL2 + ImGui and I want to recreate what I did with the 2D Engine. 
      I've managed to render the editor like I did in the 2D Engine using this example that comes with ImGui. 
      3D Editor preview
      But I don't know how to create an equivalent of sf::RenderTexture in SDL2, so I can draw the 3D scene there and convert it to ImGui::Image to show it in the editor.
      If you can provide code will be better. And if you want me to provide any specific code tell me.
      Thanks!
  • Popular Now