Jump to content
  • Advertisement
Sign in to follow this  
Hawkblood

How do I put a plane on a sphere

This topic is 2121 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

If you intended to correct an error in the post then please contact us.

Recommended Posts

I need some math help. The image may help you understand what I want. Basically, I want to be able to show a plane anywhere on the surface of a sphere. I have tried some methods, but I can't seem to get them to come out right. It is probably simple, but I can't get my head around it. The orientation of the plane needs to be such that "up" is always pointing toward the "north pole" of the sphere. Any ideas?

Share this post


Link to post
Share on other sites
Advertisement
What do you want, a plane equation or a set of axes to position an object?

Planes don't have an up vector, they have a normal and a distance from the origin. The normal is the normalised vector from the contact point to the centre of the sphere. The distance is the radius of the sphere minus the sphere's centre position dotted with the normal.

If you want a set of axes, you have the plane normal, as described above, and the up vector. Call the plane normal z, cross with the up vector to get x, then cross z and x to get y.

Edit: many matrix libraries have a 'Look at" function which would do the same thing.

Share this post


Link to post
Share on other sites

In addition to EWClay's questions, I'd like to ask: are you trying to project the plane onto the sphere so that it wraps around, or are you just "attaching" the plane to the sphere as in your illustration?

Share this post


Link to post
Share on other sites
If you make plane's pivot point the same distance from plane as sphere radius, then no matter how you rotate the plane it will always be on the sphere. If you need "up" stay the same, just don't roll the plane. Edited by Nercury

Share this post


Link to post
Share on other sites

Thank you all for posting. The ultimate goal is for this plane to actually be a terrain area on a planet. It won't be an actual plane, but that explaination got me the answers I needed.

		D3DXVECTOR3 v2(0,0,1);
		D3DXVec3TransformCoord(&v2,&v2,&SolarSystem.SolarObject[os].Objects[on].RotMat);//this is the planet's rotation matrix (its spin)
		float flong=atan2(v2.x,v2.z)+D3DX_PI/2.0f;
		if (flong>D3DX_PI*2.0f) flong-=D3DX_PI*2.0f;
		if (flong<0.0F) flong+=D3DX_PI*2.0f;//convert the transformation into an angle

		float PA=(GE->AutoPilot.Lat-90.0f)/180.0f*D3DX_PI;//the lat and lon are in degrees so I need to convert them
		float YA=(GE->AutoPilot.Lon+90.0f)/180.0f*D3DX_PI-(flong-D3DX_PI/2.0f);
		D3DXQUATERNION rot;
		D3DXQUATERNION tQ;
		D3DXQuaternionRotationYawPitchRoll(&tQ,-YA,PA,0);//using a quaternion works better
        D3DXQuaternionRotationAxis(&rot, &Camera::WORLD_XAXIS, SolarSystem.Planet[P].AxialOffset);//this is the axis offset for the planet. Not all planets have their axis straight up and down
        D3DXQuaternionMultiply(&tQ, &tQ, &rot);
		D3DXMatrixRotationQuaternion(&OM, &tQ);
		D3DXVECTOR3 v(0,0,1);
		D3DXVec3TransformCoord(&v,&v,&OM);//get the final "positional direction"
                 //multiply the vector by the radius and that gives the actual position at the sphere's surface
                 //use OM for the plane's orientation matrix

This solution works nicely.

Share this post


Link to post
Share on other sites
Sign in to follow this  

  • Advertisement
×

Important Information

By using GameDev.net, you agree to our community Guidelines, Terms of Use, and Privacy Policy.

GameDev.net is your game development community. Create an account for your GameDev Portfolio and participate in the largest developer community in the games industry.

Sign me up!