• Advertisement
  • Popular Tags

  • Popular Now

  • Advertisement
  • Similar Content

    • By fleissi
      Hey guys!

      I'm new here and I recently started developing my own rendering engine. It's open source, based on OpenGL/DirectX and C++.
      The full source code is hosted on github:
      https://github.com/fleissna/flyEngine

      I would appreciate if people with experience in game development / engine desgin could take a look at my source code. I'm looking for honest, constructive criticism on how to improve the engine.
      I'm currently writing my master's thesis in computer science and in the recent year I've gone through all the basics about graphics programming, learned DirectX and OpenGL, read some articles on Nvidia GPU Gems, read books and integrated some of this stuff step by step into the engine.

      I know about the basics, but I feel like there is some missing link that I didn't get yet to merge all those little pieces together.

      Features I have so far:
      - Dynamic shader generation based on material properties
      - Dynamic sorting of meshes to be renderd based on shader and material
      - Rendering large amounts of static meshes
      - Hierarchical culling (detail + view frustum)
      - Limited support for dynamic (i.e. moving) meshes
      - Normal, Parallax and Relief Mapping implementations
      - Wind animations based on vertex displacement
      - A very basic integration of the Bullet physics engine
      - Procedural Grass generation
      - Some post processing effects (Depth of Field, Light Volumes, Screen Space Reflections, God Rays)
      - Caching mechanisms for textures, shaders, materials and meshes

      Features I would like to have:
      - Global illumination methods
      - Scalable physics
      - Occlusion culling
      - A nice procedural terrain generator
      - Scripting
      - Level Editing
      - Sound system
      - Optimization techniques

      Books I have so far:
      - Real-Time Rendering Third Edition
      - 3D Game Programming with DirectX 11
      - Vulkan Cookbook (not started yet)

      I hope you guys can take a look at my source code and if you're really motivated, feel free to contribute :-)
      There are some videos on youtube that demonstrate some of the features:
      Procedural grass on the GPU
      Procedural Terrain Engine
      Quadtree detail and view frustum culling

      The long term goal is to turn this into a commercial game engine. I'm aware that this is a very ambitious goal, but I'm sure it's possible if you work hard for it.

      Bye,

      Phil
    • By tj8146
      I have attached my project in a .zip file if you wish to run it for yourself.
      I am making a simple 2d top-down game and I am trying to run my code to see if my window creation is working and to see if my timer is also working with it. Every time I run it though I get errors. And when I fix those errors, more come, then the same errors keep appearing. I end up just going round in circles.  Is there anyone who could help with this? 
       
      Errors when I build my code:
      1>Renderer.cpp 1>c:\users\documents\opengl\game\game\renderer.h(15): error C2039: 'string': is not a member of 'std' 1>c:\program files (x86)\windows kits\10\include\10.0.16299.0\ucrt\stddef.h(18): note: see declaration of 'std' 1>c:\users\documents\opengl\game\game\renderer.h(15): error C2061: syntax error: identifier 'string' 1>c:\users\documents\opengl\game\game\renderer.cpp(28): error C2511: 'bool Game::Rendering::initialize(int,int,bool,std::string)': overloaded member function not found in 'Game::Rendering' 1>c:\users\documents\opengl\game\game\renderer.h(9): note: see declaration of 'Game::Rendering' 1>c:\users\documents\opengl\game\game\renderer.cpp(35): error C2597: illegal reference to non-static member 'Game::Rendering::window' 1>c:\users\documents\opengl\game\game\renderer.cpp(36): error C2597: illegal reference to non-static member 'Game::Rendering::window' 1>c:\users\documents\opengl\game\game\renderer.cpp(43): error C2597: illegal reference to non-static member 'Game::Rendering::window' 1>Done building project "Game.vcxproj" -- FAILED. ========== Build: 0 succeeded, 1 failed, 0 up-to-date, 0 skipped ==========  
       
      Renderer.cpp
      #include <GL/glew.h> #include <GLFW/glfw3.h> #include "Renderer.h" #include "Timer.h" #include <iostream> namespace Game { GLFWwindow* window; /* Initialize the library */ Rendering::Rendering() { mClock = new Clock; } Rendering::~Rendering() { shutdown(); } bool Rendering::initialize(uint width, uint height, bool fullscreen, std::string window_title) { if (!glfwInit()) { return -1; } /* Create a windowed mode window and its OpenGL context */ window = glfwCreateWindow(640, 480, "Hello World", NULL, NULL); if (!window) { glfwTerminate(); return -1; } /* Make the window's context current */ glfwMakeContextCurrent(window); glViewport(0, 0, (GLsizei)width, (GLsizei)height); glOrtho(0, (GLsizei)width, (GLsizei)height, 0, 1, -1); glMatrixMode(GL_PROJECTION); glLoadIdentity(); glfwSwapInterval(1); glEnable(GL_SMOOTH); glEnable(GL_DEPTH_TEST); glEnable(GL_BLEND); glDepthFunc(GL_LEQUAL); glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); glEnable(GL_TEXTURE_2D); glLoadIdentity(); return true; } bool Rendering::render() { /* Loop until the user closes the window */ if (!glfwWindowShouldClose(window)) return false; /* Render here */ mClock->reset(); glfwPollEvents(); if (mClock->step()) { glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glfwSwapBuffers(window); mClock->update(); } return true; } void Rendering::shutdown() { glfwDestroyWindow(window); glfwTerminate(); } GLFWwindow* Rendering::getCurrentWindow() { return window; } } Renderer.h
      #pragma once namespace Game { class Clock; class Rendering { public: Rendering(); ~Rendering(); bool initialize(uint width, uint height, bool fullscreen, std::string window_title = "Rendering window"); void shutdown(); bool render(); GLFWwindow* getCurrentWindow(); private: GLFWwindow * window; Clock* mClock; }; } Timer.cpp
      #include <GL/glew.h> #include <GLFW/glfw3.h> #include <time.h> #include "Timer.h" namespace Game { Clock::Clock() : mTicksPerSecond(50), mSkipTics(1000 / mTicksPerSecond), mMaxFrameSkip(10), mLoops(0) { mLastTick = tick(); } Clock::~Clock() { } bool Clock::step() { if (tick() > mLastTick && mLoops < mMaxFrameSkip) return true; return false; } void Clock::reset() { mLoops = 0; } void Clock::update() { mLastTick += mSkipTics; mLoops++; } clock_t Clock::tick() { return clock(); } } TImer.h
      #pragma once #include "Common.h" namespace Game { class Clock { public: Clock(); ~Clock(); void update(); bool step(); void reset(); clock_t tick(); private: uint mTicksPerSecond; ufloat mSkipTics; uint mMaxFrameSkip; uint mLoops; uint mLastTick; }; } Common.h
      #pragma once #include <cstdio> #include <cstdlib> #include <ctime> #include <cstring> #include <cmath> #include <iostream> namespace Game { typedef unsigned char uchar; typedef unsigned short ushort; typedef unsigned int uint; typedef unsigned long ulong; typedef float ufloat; }  
      Game.zip
    • By lxjk
      Hi guys,
      There are many ways to do light culling in tile-based shading. I've been playing with this idea for a while, and just want to throw it out there.
      Because tile frustums are general small compared to light radius, I tried using cone test to reduce false positives introduced by commonly used sphere-frustum test.
      On top of that, I use distance to camera rather than depth for near/far test (aka. sliced by spheres).
      This method can be naturally extended to clustered light culling as well.
      The following image shows the general ideas

       
      Performance-wise I get around 15% improvement over sphere-frustum test. You can also see how a single light performs as the following: from left to right (1) standard rendering of a point light; then tiles passed the test of (2) sphere-frustum test; (3) cone test; (4) spherical-sliced cone test
       

       
      I put the details in my blog post (https://lxjk.github.io/2018/03/25/Improve-Tile-based-Light-Culling-with-Spherical-sliced-Cone.html), GLSL source code included!
       
      Eric
    • By Fadey Duh
      Good evening everyone!

      I was wondering if there is something equivalent of  GL_NV_blend_equation_advanced for AMD?
      Basically I'm trying to find more compatible version of it.

      Thank you!
    • By Jens Eckervogt
      Hello guys, 
       
      Please tell me! 
      How do I know? Why does wavefront not show for me?
      I already checked I have non errors yet.
      using OpenTK; using System.Collections.Generic; using System.IO; using System.Text; namespace Tutorial_08.net.sourceskyboxer { public class WaveFrontLoader { private static List<Vector3> inPositions; private static List<Vector2> inTexcoords; private static List<Vector3> inNormals; private static List<float> positions; private static List<float> texcoords; private static List<int> indices; public static RawModel LoadObjModel(string filename, Loader loader) { inPositions = new List<Vector3>(); inTexcoords = new List<Vector2>(); inNormals = new List<Vector3>(); positions = new List<float>(); texcoords = new List<float>(); indices = new List<int>(); int nextIdx = 0; using (var reader = new StreamReader(File.Open("Contents/" + filename + ".obj", FileMode.Open), Encoding.UTF8)) { string line = reader.ReadLine(); int i = reader.Read(); while (true) { string[] currentLine = line.Split(); if (currentLine[0] == "v") { Vector3 pos = new Vector3(float.Parse(currentLine[1]), float.Parse(currentLine[2]), float.Parse(currentLine[3])); inPositions.Add(pos); if (currentLine[1] == "t") { Vector2 tex = new Vector2(float.Parse(currentLine[1]), float.Parse(currentLine[2])); inTexcoords.Add(tex); } if (currentLine[1] == "n") { Vector3 nom = new Vector3(float.Parse(currentLine[1]), float.Parse(currentLine[2]), float.Parse(currentLine[3])); inNormals.Add(nom); } } if (currentLine[0] == "f") { Vector3 pos = inPositions[0]; positions.Add(pos.X); positions.Add(pos.Y); positions.Add(pos.Z); Vector2 tc = inTexcoords[0]; texcoords.Add(tc.X); texcoords.Add(tc.Y); indices.Add(nextIdx); ++nextIdx; } reader.Close(); return loader.loadToVAO(positions.ToArray(), texcoords.ToArray(), indices.ToArray()); } } } } } And It have tried other method but it can't show for me.  I am mad now. Because any OpenTK developers won't help me.
      Please help me how do I fix.

      And my download (mega.nz) should it is original but I tried no success...
      - Add blend source and png file here I have tried tried,.....  
       
      PS: Why is our community not active? I wait very longer. Stop to lie me!
      Thanks !
  • Advertisement
  • Advertisement
Sign in to follow this  

OpenGL Geomtery based lighting

This topic is 1882 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

If you intended to correct an error in the post then please contact us.

Recommended Posts

I had this idea that Im sure has been implemented before, I wanted to make a lighting technique where you have a set of vertices and use those vertices as your light volume. For example, if you had a area light kind of like in the crysis 3 tech demo, you would have a box where one face of the box projects a light texture that won't go past the other side of the mesh. Im pretty sure one of the crysis 3 developer video's had this, but I was then wondering how you would go about defining which faces generate the light and I couldn't think of a way that would be easy to program without a predefined set of shapes. Does anyone know how I would go about doing something like this in OpenGL, C++?

Share this post


Link to post
Share on other sites
Advertisement

I would recommend you download the Cryengine free SDK and look at the source code. I know exactly what you're talking about and I used it for the lights on the helipad I built. But I'm pretty sure there is no "easy to program" way of doing this.

 

It is really just a trick, the light is not coming from the surface. It is not well documented.

 

First I created a small object and textured it. I also painted some glow on the surface (incadescence) and then I created a light right in front of it. Then I used a shape to clip the light so it looks like it is coming from the glowing surface. The lightshape is linked to the light and the glowing surface is not actually emitting.

 

I hope this helps. Now I am late for class unsure.png

 

http://www.zbrushcentral.com/attachment.php?attachmentid=347274 

Share this post


Link to post
Share on other sites

For clarification, is this calculating the effect of lighting *as emitted from the polygons* or just bounding an area of influence? If it's the former, you're in for one hell of a time trying to calculate all that analytically. If it's the latter, see Hodgman's post.

Share this post


Link to post
Share on other sites

Actually, now that I look at the question again. I think it is asking about two different lighting methods.

 

The projected light texture that Hodgman is talking about gives you similar, and probably way more control over the shape of the emission but is not the same as geometry clipping light shape. You would then be controlling the light shape with a texture instead of geometry. It works like a lot like a decal.

Share this post


Link to post
Share on other sites
Well i was thinking more along the lines of the light being controlled by the geometry and the volume inside the geometry is where the light is, not outside of the volume ( before the first bounce that is )

I guess you could say projected textures, i tried looking up what a gobo is and thats pretty much what i was looking for except that i only found real world examples, not any programmed or in engine versions. Is there a tutorial about how to do something like this? Im not really worried whether it is forward or deferred rendering since im doing this for an art project and having more control over the lights shape is a higher priority to me.

Share this post


Link to post
Share on other sites

The projected light texture that Hodgman is talking about gives you similar, and probably way more control over the shape of the emission but is not the same as geometry clipping light shape. You would then be controlling the light shape with a texture instead of geometry. It works like a lot like a decal.

There's two main ways to apply lights in a deferred renderer -- either by screen-space quads that cover the screen-space area of the light, or by 3D geometry that covers the volume of the light. Any deferred rendering tutorial that uses the latter technique will teach you how to apply light only to areas inside a meshes volume using the stencil buffer. You can use any aribtray, closed mesh to apply the lighting if you wanted to.
No matter which lighting technique you're using (deferred with quads, deferred with volumes, forward...), you can also apply projected gobo texture as part of the same lighting effect.

Is there a tutorial about how to do something like this?

Googling "deferred rendering tutorial" and "projected texture tutorial" brings up a lot of hits.

Share this post


Link to post
Share on other sites
Sign in to follow this  

  • Advertisement