• Announcements

    • khawk

      Download the Game Design and Indie Game Marketing Freebook   07/19/17

      GameDev.net and CRC Press have teamed up to bring a free ebook of content curated from top titles published by CRC Press. The freebook, Practices of Game Design & Indie Game Marketing, includes chapters from The Art of Game Design: A Book of Lenses, A Practical Guide to Indie Game Marketing, and An Architectural Approach to Level Design. The GameDev.net FreeBook is relevant to game designers, developers, and those interested in learning more about the challenges in game development. We know game development can be a tough discipline and business, so we picked several chapters from CRC Press titles that we thought would be of interest to you, the GameDev.net audience, in your journey to design, develop, and market your next game. The free ebook is available through CRC Press by clicking here. The Curated Books The Art of Game Design: A Book of Lenses, Second Edition, by Jesse Schell Presents 100+ sets of questions, or different lenses, for viewing a game’s design, encompassing diverse fields such as psychology, architecture, music, film, software engineering, theme park design, mathematics, anthropology, and more. Written by one of the world's top game designers, this book describes the deepest and most fundamental principles of game design, demonstrating how tactics used in board, card, and athletic games also work in video games. It provides practical instruction on creating world-class games that will be played again and again. View it here. A Practical Guide to Indie Game Marketing, by Joel Dreskin Marketing is an essential but too frequently overlooked or minimized component of the release plan for indie games. A Practical Guide to Indie Game Marketing provides you with the tools needed to build visibility and sell your indie games. With special focus on those developers with small budgets and limited staff and resources, this book is packed with tangible recommendations and techniques that you can put to use immediately. As a seasoned professional of the indie game arena, author Joel Dreskin gives you insight into practical, real-world experiences of marketing numerous successful games and also provides stories of the failures. View it here. An Architectural Approach to Level Design This is one of the first books to integrate architectural and spatial design theory with the field of level design. The book presents architectural techniques and theories for level designers to use in their own work. It connects architecture and level design in different ways that address the practical elements of how designers construct space and the experiential elements of how and why humans interact with this space. Throughout the text, readers learn skills for spatial layout, evoking emotion through gamespaces, and creating better levels through architectural theory. View it here. Learn more and download the ebook by clicking here. Did you know? GameDev.net and CRC Press also recently teamed up to bring GDNet+ Members up to a 20% discount on all CRC Press books. Learn more about this and other benefits here.
Sign in to follow this  
Followers 0

Directional light and matrix issues

5 posts in this topic

I'm trying to implement basic directional lightning in OpenGL 3.3 by emulating the logic shown in this guide: http://www.arcsynthesis.org/gltut/Illumination/Tutorial%2009.html


I do not understand what matrix to send to the vertex shader to use for calculating lightning effects. The guide says modelView matrix, but to me, and when I'm running the game, it dosn't make sense; when I orient myself in the world with mouse and keyboard, the lightning direction gets altered aswell!



Here's the items to which I fill my 'render queue', which contains all data needed to draw the models:


/* RenderItem definition */
    struct RenderItem
        VertexBufferPtr mVertexBuffer;
        const Vec4 mColor;
        const Mat4 mMVP;
        const Mat3 mMVMatrix;    // I used model-view matrix here, but I dont know really which one to use

        const Vec4 mLightIntensity;
        const Vec3 mDirToLight;

       // simply extracts all the struct data into one buffer to be uploaded as UniformBuffer to shader
        void CopyUniformData(std::vector<float>& buffer) const
            std::vector<float> colorValues = GetTypeValues(mColor);
            std::vector<float> mvpMatrixValues = GetTypeValues(mMVP);
            std::vector<float> mvMatrixValues = GetTypeValues(mMVMatrix);
            std::vector<float> lightIntensityMatrixValues = GetTypeValues(mLightIntensity);
            std::vector<float> dirToLightMatrixValues = GetTypeValues(mDirToLight);

            buffer.insert(buffer.end(), colorValues.begin(), colorValues.end());
            buffer.insert(buffer.end(), mvpMatrixValues.begin(), mvpMatrixValues.end());
            buffer.insert(buffer.end(), mvMatrixValues.begin(), mvMatrixValues.end());
            buffer.insert(buffer.end(), lightIntensityMatrixValues.begin(), lightIntensityMatrixValues.end());
            buffer.insert(buffer.end(), dirToLightMatrixValues.begin(), dirToLightMatrixValues.end());

        RenderItem(VertexBufferPtr vertexBuffer, const Vec4& color, const Mat4& mvp, const Mat3& mv, const Vec4& lightIntensity, const Vec3& dirToLight);



Here's where I create all the RenderItems for my renderqueue:


void Engine::CreateModelRenderables(const Model* model, const Mat4& viewMatrix, const Mat4& perspectiveMatrix, const Mat4& nodeTransform, std::vector<RenderItem>& renderQueue, const std::vector<LightPtr>& activeLights)
        const Mat4 modelMatrix = nodeTransform * model->mTransform;       // 'nodeTransform' is the SceneNodes transform, while model->mTransform is the models transform... so this gives the model-world matrix
        const Mat4 modelViewMatrix = viewMatrix * modelMatrix;
        const Mat4 modelViewProjMatrix = perspectiveMatrix * modelViewMatrix;

        // 'activelights' is a vector, but for now only one light is supported, so I just pick the first element

        // TODO: handle multiple lights
        BOOST_FOREACH(const Mesh& mesh, model->mMeshes)
            if (activeLights.size() >= 1)
                renderQueue.push_back(RenderItem(mesh.mVertexBuffer, Vec4(1.0f, 0.3f, 0.3f, 1.0f), modelViewProjMatrix, Mat3(....???....), activeLights.front()->mLightIntensity, activeLights.front()->mLightDirection));
                renderQueue.push_back(RenderItem(mesh.mVertexBuffer, Vec4(1.0f, 0.3f, 0.3f, 1.0f), modelViewProjMatrix, Mat3(....???....), Vec4(0.0f), Vec3(0.0f)));

        BOOST_FOREACH(const Model& childModel, model->mChildren)
            CreateModelRenderables(&childModel, viewMatrix, perspectiveMatrix, modelMatrix, renderQueue, activeLights);





for drawing, I just loop over the renderitems, update the UniformBuffer object and glDrawElements (vertexbuffer->render):


void OpenGLRenderer::DrawRenderables(const std::vector<RenderItem>& renderQueue)
        BOOST_FOREACH(const RenderItem& renderItem, renderQueue)





this is my vertex shader:


 const std::string gVertexShader =	"#version 330								                \n	\
                                                                                                    \n  \
                                        layout(std140) uniform DefaultUniform                       \n  \
                                        {                                                           \n  \
                                            vec4 Color;                                             \n  \
                                            mat4 MVPMatrix;                                         \n  \
                                            mat3 MVMatrix;                                          \n  \
                                                                                                    \n  \
                                            vec4 LightIntensity;                                    \n  \
                                            vec3 DirToLight;                                        \n  \
                                        };                                                          \n  \
                                                                                                    \n	\
                                        layout(location = 0) in vec3 vert_position;				    \n	\
                                        layout(location = 1) in vec3 vert_normal;					\n	\
                                        out vec4 frag_color;                                        \n	\
                                                                                                    \n	\
                                        void main()									                \n	\
                                        {											                \n	\
                                            gl_Position = MVPMatrix * vec4(vert_position, 1.0f);    \n  \
                                                                                                    \n  \
                                            vec3 normCamSpace = normalize(MVMatrix * vert_normal);  \n  \
                                            float angIncidence = dot(normCamSpace, DirToLight);     \n  \
                                            angIncidence = clamp(angIncidence, 0, 1);               \n  \
                                                                                                    \n  \
                                            frag_color = LightIntensity * Color * angIncidence;     \n  \
                                        }											                \n";



the fragment shader simply passes-through the frag_color..



SO, my question is, what matrix should the MVMatrix be in the vertex shader? The guide says the 'modelToCameraMatrix', which I suppose is my modelViewMatrix in Engine::CreateModelRenderables(), but I don't want the lights direction to change when I re-orient my camera!



EDIT: Here is my camera class used to generate the viewMatrix through getCameraTransform(), in case there might be something wrong there? 

I don't think so though, as I can move around in the world with WASD + mouse just as expected, its just the lightning that is wierd...


Camera::Camera() : mTranslation(0.0f), mHorizontalAngle(0.0f), mVerticalAngle(0.0f)

    void Camera::SetPosition(const Vec3& position)
        mTranslation = position;

    void Camera::TranslateCamera(const Vec3& translateVec)
        mTranslation += translateVec;
    void Camera::RotateCamera(const float offsetHorizontalAngle, const float offsetVerticalAngle)
        mHorizontalAngle += offsetHorizontalAngle;
        mVerticalAngle   += offsetVerticalAngle;

    Vec3 Camera::Forward() const
        Vec4 forward = Inverse(Orientation()) * Vec4(0, 0, 1, 1);

        return Vec3(forward);

    Vec3 Camera::Right() const
        Vec4 right = Inverse(Orientation()) * Vec4(-1, 0, 0, 1);

        return Vec3(right);

    Mat4 Camera::Orientation() const
        Quaternion rotation;
        rotation = AngleAxisToQuaternion(mVerticalAngle, Vec3(1.0f, 0.0f, 0.0f));
        rotation = rotation * AngleAxisToQuaternion(mHorizontalAngle, Vec3(0.0f, 1.0f, 0.0f));

        return QuaternionToMat4(rotation);

    Mat4 Camera::GetCameraTransform() const
        Mat4 viewMatrix(1.0f);
        viewMatrix = Orientation() * Translate(viewMatrix, mTranslation);

        return viewMatrix;
Edited by KaiserJohan

Share this post

Link to post
Share on other sites

I added the camera class which is used to get the viewMatrix aswell, but I dont think that is the problem since I can navigate with keyboard and mouse naturally as in any FPS


Share this post

Link to post
Share on other sites

Is your "dirToLight" vec3 in camera space?


I think you might have a dirToLight (an unit vector I guess) specified in word space, and since you're doing your lighting in camera space, you get weird lighting from it.


Since its an uniform, its better if you transform your dirToLight to camera space (MVMatrix * dirToLight) in the CPU and then pass it as an uniform to the GPU.


Share this post

Link to post
Share on other sites

I don't want the light direction to change when I orient/move my camera around; that happens when I try to do lighting in camera space right?


EDIT: So I tried doing the lighting normalization in world space. So, the LightDir is unchanged (its specified in world space) and then as 'MVMatrix' I actually pass the 'modelMatrix', and otherwise the code is unchanged.

As a result, I see only light being applied when I increase the X-values of LightDir; changing Y and Z values dosn't cause any lightning whatsoever. Why could this be?

Edited by KaiserJohan

Share this post

Link to post
Share on other sites

Alright, I solved it.


For those interested, I can do the lighting calculations in world space just fine if I supply a mat4 model-to-world matrix rather than a mat3 model-to-world matrix to the vertexshader. I believe it has something to do with translation, since the objects in question were translated away abit from the camera, but if anyone has a complete answer I would be happy to hear it. 



EDIT: One thing itches me though, why do people/guides do all lighting transformations in camera space rather than world space?

Edited by KaiserJohan

Share this post

Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  
Followers 0

  • Similar Content

    • By mapra99

      I am working on a recent project and I have been learning how to code in C# using OpenGL libraries for some graphics. I have achieved some quite interesting things using TAO Framework writing in Console Applications, creating a GLUT Window. But my problem now is that I need to incorporate the Graphics in a Windows Form so I can relate the objects that I render with some .NET Controls.

      To deal with this problem, I have seen in some forums that it's better to use OpenTK instead of TAO Framework, so I can use the glControl that OpenTK libraries offer. However, I haven't found complete articles, tutorials or source codes that help using the glControl or that may insert me into de OpenTK functions. Would somebody please share in this forum some links or files where I can find good documentation about this topic? Or may I use another library different of OpenTK?

    • By Solid_Spy
      Hello, I have been working on SH Irradiance map rendering, and I have been using a GLSL pixel shader to render SH irradiance to 2D irradiance maps for my static objects. I already have it working with 9 3D textures so far for the first 9 SH functions.
      In my GLSL shader, I have to send in 9 SH Coefficient 3D Texures that use RGBA8 as a pixel format. RGB being used for the coefficients for red, green, and blue, and the A for checking if the voxel is in use (for the 3D texture solidification shader to prevent bleeding).
      My problem is, I want to knock this number of textures down to something like 4 or 5. Getting even lower would be a godsend. This is because I eventually plan on adding more SH Coefficient 3D Textures for other parts of the game map (such as inside rooms, as opposed to the outside), to circumvent irradiance probe bleeding between rooms separated by walls. I don't want to reach the 32 texture limit too soon. Also, I figure that it would be a LOT faster.
      Is there a way I could, say, store 2 sets of SH Coefficients for 2 SH functions inside a texture with RGBA16 pixels? If so, how would I extract them from inside GLSL? Let me know if you have any suggestions ^^.
    • By KarimIO
      EDIT: I thought this was restricted to Attribute-Created GL contexts, but it isn't, so I rewrote the post.
      Hey guys, whenever I call SwapBuffers(hDC), I get a crash, and I get a "Too many posts were made to a semaphore." from Windows as I call SwapBuffers. What could be the cause of this?
      Update: No crash occurs if I don't draw, just clear and swap.
      static PIXELFORMATDESCRIPTOR pfd = // pfd Tells Windows How We Want Things To Be { sizeof(PIXELFORMATDESCRIPTOR), // Size Of This Pixel Format Descriptor 1, // Version Number PFD_DRAW_TO_WINDOW | // Format Must Support Window PFD_SUPPORT_OPENGL | // Format Must Support OpenGL PFD_DOUBLEBUFFER, // Must Support Double Buffering PFD_TYPE_RGBA, // Request An RGBA Format 32, // Select Our Color Depth 0, 0, 0, 0, 0, 0, // Color Bits Ignored 0, // No Alpha Buffer 0, // Shift Bit Ignored 0, // No Accumulation Buffer 0, 0, 0, 0, // Accumulation Bits Ignored 24, // 24Bit Z-Buffer (Depth Buffer) 0, // No Stencil Buffer 0, // No Auxiliary Buffer PFD_MAIN_PLANE, // Main Drawing Layer 0, // Reserved 0, 0, 0 // Layer Masks Ignored }; if (!(hDC = GetDC(windowHandle))) return false; unsigned int PixelFormat; if (!(PixelFormat = ChoosePixelFormat(hDC, &pfd))) return false; if (!SetPixelFormat(hDC, PixelFormat, &pfd)) return false; hRC = wglCreateContext(hDC); if (!hRC) { std::cout << "wglCreateContext Failed!\n"; return false; } if (wglMakeCurrent(hDC, hRC) == NULL) { std::cout << "Make Context Current Second Failed!\n"; return false; } ... // OGL Buffer Initialization glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT); glBindVertexArray(vao); glUseProgram(myprogram); glDrawElements(GL_TRIANGLES, indexCount, GL_UNSIGNED_SHORT, (void *)indexStart); SwapBuffers(GetDC(window_handle));  
    • By Tchom
      Hey devs!
      I've been working on a OpenGL ES 2.0 android engine and I have begun implementing some simple (point) lighting. I had something fairly simple working, so I tried to get fancy and added color-tinting light. And it works great... with only one or two lights. Any more than that, the application drops about 15 frames per light added (my ideal is at least 4 or 5). I know implementing lighting is expensive, I just didn't think it was that expensive. I'm fairly new to the world of OpenGL and GLSL, so there is a good chance I've written some crappy shader code. If anyone had any feedback or tips on how I can optimize this code, please let me know.
      Vertex Shader
      uniform mat4 u_MVPMatrix; uniform mat4 u_MVMatrix; attribute vec4 a_Position; attribute vec3 a_Normal; attribute vec2 a_TexCoordinate; varying vec3 v_Position; varying vec3 v_Normal; varying vec2 v_TexCoordinate; void main() { v_Position = vec3(u_MVMatrix * a_Position); v_TexCoordinate = a_TexCoordinate; v_Normal = vec3(u_MVMatrix * vec4(a_Normal, 0.0)); gl_Position = u_MVPMatrix * a_Position; } Fragment Shader
      precision mediump float; uniform vec4 u_LightPos["+numLights+"]; uniform vec4 u_LightColours["+numLights+"]; uniform float u_LightPower["+numLights+"]; uniform sampler2D u_Texture; varying vec3 v_Position; varying vec3 v_Normal; varying vec2 v_TexCoordinate; void main() { gl_FragColor = (texture2D(u_Texture, v_TexCoordinate)); float diffuse = 0.0; vec4 colourSum = vec4(1.0); for (int i = 0; i < "+numLights+"; i++) { vec3 toPointLight = vec3(u_LightPos[i]); float distance = length(toPointLight - v_Position); vec3 lightVector = normalize(toPointLight - v_Position); float diffuseDiff = 0.0; // The diffuse difference contributed from current light diffuseDiff = max(dot(v_Normal, lightVector), 0.0); diffuseDiff = diffuseDiff * (1.0 / (1.0 + ((1.0-u_LightPower[i])* distance * distance))); //Determine attenuatio diffuse += diffuseDiff; gl_FragColor.rgb *= vec3(1.0) / ((vec3(1.0) + ((vec3(1.0) - vec3(u_LightColours[i]))*diffuseDiff))); //The expensive part } diffuse += 0.1; //Add ambient light gl_FragColor.rgb *= diffuse; } Am I making any rookie mistakes? Or am I just being unrealistic about what I can do? Thanks in advance
    • By yahiko00
      Not sure to post at the right place, if not, please forgive me...
      For a game project I am working on, I would like to implement a 2D starfield as a background.
      I do not want to deal with static tiles, since I plan to slowly animate the starfield. So, I am trying to figure out how to generate a random starfield for the entire map.
      I feel that using a uniform distribution for the stars will not do the trick. Instead I would like something similar to the screenshot below, taken from the game Star Wars: Empire At War (all credits to Lucasfilm, Disney, and so on...).

      Is there someone who could have an idea of a distribution which could result in such a starfield?
      Any insight would be appreciated
  • Popular Now