• Advertisement
Sign in to follow this  

DX11 DX11 Sprite Like Technique - With a quad

This topic is 1760 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

If you intended to correct an error in the post then please contact us.

Recommended Posts

Hi guys,

 

right now I'm having a small quad with a texture on it, and I wan't it to face my camera. The reason for that is because I wan't to mess around with Post Processing, It looks for me right now:

 

if ssao

  Render Normals to TEXTUREN

  Render Position to TEXTUREP

Render Diffuse     to TEXTURED

 

Render Plane with TEXTUREN | TEXTUREP | TEXTURED - To do some post processing

Show it!

 

Now please correct me if this is a wrong way!

 

But how is it possible to rotate and translate a quad to face the player/camera, looking like it's a real 3d scene (with some post processing) ?

 

Thank You

Share this post


Link to post
Share on other sites
Advertisement

But how is it possible to rotate and translate a quad to face the player/camera, looking like it's a real 3d scene (with some post processing) ?

There are a number of ways to do a full screen quad.  Typically you just send four vertices with already transformed content (i.e. w=1 already) and their positions are in the clip space corners.  They would be something like this:

 

(-1,1,0,1) for upper left

(1,1,0,1) for upper right

(-1,-1,0,1) for lower left

(1,-1,0,1) for lower right

 

Since these are in clip space, you are guaranteed to cover the entire viewport regardless of the actual size of it.

Share this post


Link to post
Share on other sites

But how in terms of HLSL would this be possible?

 

So would i specify those 4 points and directly map them into HLSL, without any use of any Matrices? Sorry, I'm not very familiar with this topic of view space conversions...

Share this post


Link to post
Share on other sites

But how in terms of HLSL would this be possible?

 

So would i specify those 4 points and directly map them into HLSL, without any use of any Matrices? Sorry, I'm not very familiar with this topic of view space conversions...

Yup - that's exactly right.  The vertices are already ready to go to the rasterizer, so you just pass them through the vertex shader.  Just make sure your w-values are equal to 1, and it should work fairly easily.  To test it out, you can also try modifying the values to cover half the screen, a quarter of the screen, etc...

Share this post


Link to post
Share on other sites

Sorry to take your time, I do understand the concept, but I'm doing it wrong somehow.

 

Post Process Shader file for now: (Where shader stuff and quad is created)

 

#include "stdafx.h"
#include "PostProcess.h"

#include <d3dcompiler.h>
#include <DxErr.h>

#define CE_WARNING(title, message) MessageBoxA(NULL, message, title, 0) 

BOOL PostProcessClass::Create( ID3D11Device *&dev, ID3D11DeviceContext *&devcon )
{
	string finals = string(
		"C:\\Users\\Utilizador\\Documents\\Visual Studio 2012\\Projects\\Cube3D\\Product\\Bin32\\") + string("PostProcessShader.hlsl").c_str();

	ID3D10Blob *vserrors;
	ID3D10Blob *pserrors;
	HRESULT HR;

	D3DX11CompileFromFile(finals.c_str(), 0, 0, "VShader", "vs_5_0", D3DCOMPILE_DEBUG, 0, 0, &VS, &vserrors, &HR);
	D3DX11CompileFromFile(finals.c_str(), 0, 0, "PShader", "ps_5_0", D3DCOMPILE_DEBUG, 0, 0, &PS, &pserrors, &HR);
	
	// create the shader objects
	if (!VS)
	{
		DXTRACE_ERR(TEXT(DXGetErrorDescription(HR)),HR);

		MessageBoxA(NULL, "The Post Process vertex shader creation has failed, program will now exit!", "ERROR", 0);
		exit(0);
	}
	if (!PS)
	{
		DXTRACE_ERR(TEXT(DXGetErrorDescription(HR)),HR);

		MessageBoxA(NULL, "The Post Process pixel shader creation has failed, program will now exit!", "ERROR", 0);
		exit(0);
	}
	
	dev->CreateVertexShader(VS->GetBufferPointer(), VS->GetBufferSize(), NULL, &pVS);
	dev->CreatePixelShader(PS->GetBufferPointer(), PS->GetBufferSize(), NULL, &pPS);

	D3D11_INPUT_ELEMENT_DESC ied[] =
	{
		{"POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0}
	};
	
	if (dev->CreateInputLayout(ied, 1, VS->GetBufferPointer(), VS->GetBufferSize(), &pLayout) != S_OK)
		CE_WARNING("Input Layout Creation", "Input Layout creation in Post Process has failed!");

	// create the vertex buffer
	D3D11_BUFFER_DESC bd;
	ZeroMemory(&bd, sizeof(bd));

	Vertices[0] = D3DXVECTOR3(-1, 0, 1);
	Vertices[1] = D3DXVECTOR3(1, 0, 1);
	Vertices[2] = D3DXVECTOR3(-1, 0, -1);
	Vertices[3] = D3DXVECTOR3(1, 0, 1);

	Indices[0] = 3;
	Indices[1] = 1;
	Indices[2] = 2;
	Indices[3] = 2;
	Indices[4] = 1;
	Indices[5] = 0;

	bd.Usage = D3D11_USAGE_DYNAMIC;
	bd.ByteWidth = sizeof(D3DXVECTOR3) * 4;
	bd.BindFlags = D3D11_BIND_VERTEX_BUFFER;
	bd.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
	
	dev->CreateBuffer(&bd, NULL, &vBFF);

	D3D11_MAPPED_SUBRESOURCE ms;
	// copy the vertices into the buffer
	devcon->Map(vBFF, NULL, D3D11_MAP_WRITE_DISCARD, NULL, &ms);    // map the buffer
	memcpy(ms.pData, Vertices, sizeof(Vertices));                 // copy the data
	devcon->Unmap(vBFF, NULL);

	//**INDICES**//

	bd.Usage = D3D11_USAGE_DYNAMIC;
	bd.ByteWidth = sizeof(DWORD) * 6;
	bd.BindFlags = D3D11_BIND_INDEX_BUFFER;
	bd.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
	
	dev->CreateBuffer(&bd, NULL, &iBFF);

	D3D11_MAPPED_SUBRESOURCE msI;
	// copy the vertices into the buffer
	devcon->Map(iBFF, NULL, D3D11_MAP_WRITE_DISCARD, NULL, &msI);    // map the buffer
	memcpy(msI.pData, Indices, sizeof(Indices));                 // copy the data
	devcon->Unmap(iBFF, NULL);
}

void PostProcessClass::ApplyShader(ID3D11Device *&dev, ID3D11DeviceContext *&devcon)
{
	// set the shader objects
	devcon->VSSetShader(pVS, 0, 0);
	devcon->PSSetShader(pPS, 0, 0);
	devcon->IASetInputLayout(pLayout);
}

void PostProcessClass::Render(ID3D11DeviceContext *&devcon, ID3D11Device *&dev)
{
	ApplyShader(dev, devcon);

	UINT stride = sizeof(D3DXVECTOR3);
	UINT offset = 0;

	devcon->IASetVertexBuffers(0, 1, &vBFF, &stride, &offset);
	devcon->IASetIndexBuffer(iBFF, DXGI_FORMAT_R32_UINT, 0);

	devcon->DrawIndexed(6, 0, 0);
}

 

Now the output is a black screen, and heres the reason from debugging:

 

9sw294.png

 

When you look at the vertex shader, the result is a straight line, which isn't exactly what I wanted happy.png

 

Now the question is why?

 

Ohh, almost forgot, my shader (it's simple for now for debugging):

 

struct VOut
{
    float4 position : SV_POSITION;
};

VOut VShader(float3 position : POSITION)
{
    VOut output;

    output.position = float4(position, 1.0f);
	output.position.w = 1.0f;
	
    return output;
}

float4 PShader(VOut input) : SV_TARGET
{
	return float4(1, 0, 0, 1);
}
Edited by Migi0027

Share this post


Link to post
Share on other sites

Wait, so what should I do, I'm probably not understanding this then... What's wrong with my code?

Edited by Migi0027

Share this post


Link to post
Share on other sites
Sign in to follow this  

  • Advertisement
  • Advertisement
  • Popular Now

  • Advertisement
  • Similar Content

    • By AxeGuywithanAxe
      I wanted to see how others are currently handling descriptor heap updates and management.
      I've read a few articles and there tends to be three major strategies :
      1 ) You split up descriptor heaps per shader stage ( i.e one for vertex shader , pixel , hull, etc)
      2) You have one descriptor heap for an entire pipeline
      3) You split up descriptor heaps for update each update frequency (i.e EResourceSet_PerInstance , EResourceSet_PerPass , EResourceSet_PerMaterial, etc)
      The benefits of the first two approaches is that it makes it easier to port current code, and descriptor / resource descriptor management and updating tends to be easier to manage, but it seems to be not as efficient.
      The benefits of the third approach seems to be that it's the most efficient because you only manage and update objects when they change.
    • By evelyn4you
      hi,
      until now i use typical vertexshader approach for skinning with a Constantbuffer containing the transform matrix for the bones and an the vertexbuffer containing bone index and bone weight.
      Now i have implemented realtime environment  probe cubemaping so i have to render my scene from many point of views and the time for skinning takes too long because it is recalculated for every side of the cubemap.
      For Info i am working on Win7 an therefore use one Shadermodel 5.0 not 5.x that have more options, or is there a way to use 5.x in Win 7
      My Graphic Card is Directx 12 compatible NVidia GTX 960
      the member turanszkij has posted a good for me understandable compute shader. ( for Info: in his engine he uses an optimized version of it )
      https://turanszkij.wordpress.com/2017/09/09/skinning-in-compute-shader/
      Now my questions
       is it possible to feed the compute shader with my orignial vertexbuffer or do i have to copy it in several ByteAdressBuffers as implemented in the following code ?
        the same question is about the constant buffer of the matrixes
       my more urgent question is how do i feed my normal pipeline with the result of the compute Shader which are 2 RWByteAddressBuffers that contain position an normal
      for example i could use 2 vertexbuffer bindings
      1 containing only the uv coordinates
      2.containing position and normal
      How do i copy from the RWByteAddressBuffers to the vertexbuffer ?
       
      (Code from turanszkij )
      Here is my shader implementation for skinning a mesh in a compute shader:
      1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 struct Bone { float4x4 pose; }; StructuredBuffer<Bone> boneBuffer;   ByteAddressBuffer vertexBuffer_POS; // T-Pose pos ByteAddressBuffer vertexBuffer_NOR; // T-Pose normal ByteAddressBuffer vertexBuffer_WEI; // bone weights ByteAddressBuffer vertexBuffer_BON; // bone indices   RWByteAddressBuffer streamoutBuffer_POS; // skinned pos RWByteAddressBuffer streamoutBuffer_NOR; // skinned normal RWByteAddressBuffer streamoutBuffer_PRE; // previous frame skinned pos   inline void Skinning(inout float4 pos, inout float4 nor, in float4 inBon, in float4 inWei) {  float4 p = 0, pp = 0;  float3 n = 0;  float4x4 m;  float3x3 m3;  float weisum = 0;   // force loop to reduce register pressure  // though this way we can not interleave TEX - ALU operations  [loop]  for (uint i = 0; ((i &lt; 4) &amp;&amp; (weisum&lt;1.0f)); ++i)  {  m = boneBuffer[(uint)inBon].pose;  m3 = (float3x3)m;   p += mul(float4(pos.xyz, 1), m)*inWei;  n += mul(nor.xyz, m3)*inWei;   weisum += inWei;  }   bool w = any(inWei);  pos.xyz = w ? p.xyz : pos.xyz;  nor.xyz = w ? n : nor.xyz; }   [numthreads(1024, 1, 1)] void main( uint3 DTid : SV_DispatchThreadID ) {  const uint fetchAddress = DTid.x * 16; // stride is 16 bytes for each vertex buffer now...   uint4 pos_u = vertexBuffer_POS.Load4(fetchAddress);  uint4 nor_u = vertexBuffer_NOR.Load4(fetchAddress);  uint4 wei_u = vertexBuffer_WEI.Load4(fetchAddress);  uint4 bon_u = vertexBuffer_BON.Load4(fetchAddress);   float4 pos = asfloat(pos_u);  float4 nor = asfloat(nor_u);  float4 wei = asfloat(wei_u);  float4 bon = asfloat(bon_u);   Skinning(pos, nor, bon, wei);   pos_u = asuint(pos);  nor_u = asuint(nor);   // copy prev frame current pos to current frame prev pos streamoutBuffer_PRE.Store4(fetchAddress, streamoutBuffer_POS.Load4(fetchAddress)); // write out skinned props:  streamoutBuffer_POS.Store4(fetchAddress, pos_u);  streamoutBuffer_NOR.Store4(fetchAddress, nor_u); }  
    • By mister345
      Hi, can someone please explain why this is giving an assertion EyePosition!=0 exception?
       
      _lightBufferVS->viewMatrix = DirectX::XMMatrixLookAtLH(XMLoadFloat3(&_lightBufferVS->position), XMLoadFloat3(&_lookAt), XMLoadFloat3(&up));
      It looks like DirectX doesnt want the 2nd parameter to be a zero vector in the assertion, but I passed in a zero vector with this exact same code in another program and it ran just fine. (Here is the version of the code that worked - note XMLoadFloat3(&m_lookAt) parameter value is (0,0,0) at runtime - I debugged it - but it throws no exceptions.
          m_viewMatrix = DirectX::XMMatrixLookAtLH(XMLoadFloat3(&m_position), XMLoadFloat3(&m_lookAt), XMLoadFloat3(&up)); Here is the repo for the broken code (See LightClass) https://github.com/mister51213/DirectX11Engine/blob/master/DirectX11Engine/LightClass.cpp
      and here is the repo with the alternative version of the code that is working with a value of (0,0,0) for the second parameter.
      https://github.com/mister51213/DX11Port_SoftShadows/blob/master/Engine/lightclass.cpp
    • By mister345
      Hi, can somebody please tell me in clear simple steps how to debug and step through an hlsl shader file?
      I already did Debug > Start Graphics Debugging > then captured some frames from Visual Studio and
      double clicked on the frame to open it, but no idea where to go from there.
       
      I've been searching for hours and there's no information on this, not even on the Microsoft Website!
      They say "open the  Graphics Pixel History window" but there is no such window!
      Then they say, in the "Pipeline Stages choose Start Debugging"  but the Start Debugging option is nowhere to be found in the whole interface.
      Also, how do I even open the hlsl file that I want to set a break point in from inside the Graphics Debugger?
       
      All I want to do is set a break point in a specific hlsl file, step thru it, and see the data, but this is so unbelievably complicated
      and Microsoft's instructions are horrible! Somebody please, please help.
       
       
       

    • By mister345
      I finally ported Rastertek's tutorial # 42 on soft shadows and blur shading. This tutorial has a ton of really useful effects and there's no working version anywhere online.
      Unfortunately it just draws a black screen. Not sure what's causing it. I'm guessing the camera or ortho matrix transforms are wrong, light directions, or maybe texture resources not being properly initialized.  I didnt change any of the variables though, only upgraded all types and functions DirectX3DVector3 to XMFLOAT3, and used DirectXTK for texture loading. If anyone is willing to take a look at what might be causing the black screen, maybe something pops out to you, let me know, thanks.
      https://github.com/mister51213/DX11Port_SoftShadows
       
      Also, for reference, here's tutorial #40 which has normal shadows but no blur, which I also ported, and it works perfectly.
      https://github.com/mister51213/DX11Port_ShadowMapping
       
  • Advertisement