• Advertisement
  • Popular Tags

  • Popular Now

  • Advertisement
  • Similar Content

    • By cozzie
      Hi all,
      As a part of the debug drawing system in my engine,  I want to add support for rendering simple text on screen  (aka HUD/ HUD style). From what I've read there are a few options, in short:
      1. Write your own font sprite renderer
      2. Using Direct2D/Directwrite, combine with DX11 rendertarget/ backbuffer
      3. Use an external library, like the directx toolkit etc.
      I want to go for number 2, but articles/ documentation confused me a bit. Some say you need to create a DX10 device, to be able to do this, because it doesn't directly work with the DX11 device.  But other articles tell that this was 'patched' later on and should work now.
      Can someone shed some light on this and ideally provide me an example or article on  how to set this up?
      All input is appreciated.
    • By stale
      I've just started learning about tessellation from Frank Luna's DX11 book. I'm getting some very weird behavior when I try to render a tessellated quad patch if I also render a mesh in the same frame. The tessellated quad patch renders just fine if it's the only thing I'm rendering. This is pictured below:
      However, when I attempt to render the same tessellated quad patch along with the other entities in the scene (which are simple triangle-lists), I get the following error:

      I have no idea why this is happening, and google searches have given me no leads at all. I use the following code to render the tessellated quad patch:
      ID3D11DeviceContext* dc = GetGFXDeviceContext(); dc->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_4_CONTROL_POINT_PATCHLIST); dc->IASetInputLayout(ShaderManager::GetInstance()->m_JQuadTess->m_InputLayout); float blendFactors[] = { 0.0f, 0.0f, 0.0f, 0.0f }; // only used with D3D11_BLEND_BLEND_FACTOR dc->RSSetState(m_rasterizerStates[RSWIREFRAME]); dc->OMSetBlendState(m_blendStates[BSNOBLEND], blendFactors, 0xffffffff); dc->OMSetDepthStencilState(m_depthStencilStates[DSDEFAULT], 0); ID3DX11EffectTechnique* activeTech = ShaderManager::GetInstance()->m_JQuadTess->Tech; D3DX11_TECHNIQUE_DESC techDesc; activeTech->GetDesc(&techDesc); for (unsigned int p = 0; p < techDesc.Passes; p++) { TerrainVisual* terrainVisual = (TerrainVisual*)entity->m_VisualComponent; UINT stride = sizeof(TerrainVertex); UINT offset = 0; GetGFXDeviceContext()->IASetVertexBuffers(0, 1, &terrainVisual->m_VB, &stride, &offset); Vector3 eyePos = Vector3(cam->m_position); Matrix rotation = Matrix::CreateFromYawPitchRoll(entity->m_rotationEuler.x, entity->m_rotationEuler.y, entity->m_rotationEuler.z); Matrix model = rotation * Matrix::CreateTranslation(entity->m_position); Matrix view = cam->GetLookAtMatrix(); Matrix MVP = model * view * m_ProjectionMatrix; ShaderManager::GetInstance()->m_JQuadTess->SetEyePosW(eyePos); ShaderManager::GetInstance()->m_JQuadTess->SetWorld(model); ShaderManager::GetInstance()->m_JQuadTess->SetWorldViewProj(MVP); activeTech->GetPassByIndex(p)->Apply(0, GetGFXDeviceContext()); GetGFXDeviceContext()->Draw(4, 0); } dc->RSSetState(0); dc->OMSetBlendState(0, blendFactors, 0xffffffff); dc->OMSetDepthStencilState(0, 0); I draw my scene by looping through the list of entities and calling the associated draw method depending on the entity's "visual type":
      for (unsigned int i = 0; i < scene->GetEntityList()->size(); i++) { Entity* entity = scene->GetEntityList()->at(i); if (entity->m_VisualComponent->m_visualType == VisualType::MESH) DrawMeshEntity(entity, cam, sun, point); else if (entity->m_VisualComponent->m_visualType == VisualType::BILLBOARD) DrawBillboardEntity(entity, cam, sun, point); else if (entity->m_VisualComponent->m_visualType == VisualType::TERRAIN) DrawTerrainEntity(entity, cam); } HR(m_swapChain->Present(0, 0)); Any help/advice would be much appreciated!
    • By KaiserJohan
      Am trying a basebones tessellation shader and getting unexpected result when increasing the tessellation factor. Am rendering a group of quads and trying to apply tessellation to them.
      OutsideTess = (1,1,1,1), InsideTess= (1,1)

      OutsideTess = (1,1,1,1), InsideTess= (2,1)

      I expected 4 triangles in the quad, not two. Any idea of whats wrong?
      struct PatchTess { float mEdgeTess[4] : SV_TessFactor; float mInsideTess[2] : SV_InsideTessFactor; }; struct VertexOut { float4 mWorldPosition : POSITION; float mTessFactor : TESS; }; struct DomainOut { float4 mWorldPosition : SV_POSITION; }; struct HullOut { float4 mWorldPosition : POSITION; }; Hull shader:
      PatchTess PatchHS(InputPatch<VertexOut, 3> inputVertices) { PatchTess patch; patch.mEdgeTess[ 0 ] = 1; patch.mEdgeTess[ 1 ] = 1; patch.mEdgeTess[ 2 ] = 1; patch.mEdgeTess[ 3 ] = 1; patch.mInsideTess[ 0 ] = 2; patch.mInsideTess[ 1 ] = 1; return patch; } [domain("quad")] [partitioning("fractional_odd")] [outputtopology("triangle_ccw")] [outputcontrolpoints(4)] [patchconstantfunc("PatchHS")] [maxtessfactor( 64.0 )] HullOut hull_main(InputPatch<VertexOut, 3> verticeData, uint index : SV_OutputControlPointID) { HullOut ret; ret.mWorldPosition = verticeData[index].mWorldPosition; return ret; }  
      Domain shader:
      [domain("quad")] DomainOut domain_main(PatchTess patchTess, float2 uv : SV_DomainLocation, const OutputPatch<HullOut, 4> quad) { DomainOut ret; const float MipInterval = 20.0f; ret.mWorldPosition.xz = quad[ 0 ].mWorldPosition.xz * ( 1.0f - uv.x ) * ( 1.0f - uv.y ) + quad[ 1 ].mWorldPosition.xz * uv.x * ( 1.0f - uv.y ) + quad[ 2 ].mWorldPosition.xz * ( 1.0f - uv.x ) * uv.y + quad[ 3 ].mWorldPosition.xz * uv.x * uv.y ; ret.mWorldPosition.y = quad[ 0 ].mWorldPosition.y; ret.mWorldPosition.w = 1; ret.mWorldPosition = mul( gFrameViewProj, ret.mWorldPosition ); return ret; }  
      Any ideas what could be wrong with these shaders?
    • By simco50
      I've stumbled upon Urho3D engine and found that it has a really nice and easy to read code structure.
      I think the graphics abstraction looks really interesting and I like the idea of how it defers pipeline state changes until just before the draw call to resolve redundant state changes.
      This is done by saving the state changes (blendEnabled/SRV changes/RTV changes) in member variables and just before the draw, apply the actual state changes using the graphics context.
      It looks something like this (pseudo):
      void PrepareDraw() { if(renderTargetsDirty) { pD3D11DeviceContext->OMSetRenderTarget(mCurrentRenderTargets); renderTargetsDirty = false } if(texturesDirty) { pD3D11DeviceContext->PSSetShaderResourceView(..., mCurrentSRVs); texturesDirty = false } .... //Some more state changes } This all looked like a great design at first but I've found that there is one big issue with this which I don't really understand how it is solved in their case and how I would tackle it.
      I'll explain it by example, imagine I have two rendertargets: my backbuffer RT and an offscreen RT.
      Say I want to render my backbuffer to the offscreen RT and then back to the backbuffer (Just for the sake of the example).
      You would do something like this:
      //Render to the offscreen RT pGraphics->SetRenderTarget(pOffscreenRT->GetRTV()); pGraphics->SetTexture(diffuseSlot, pDefaultRT->GetSRV()) pGraphics->DrawQuad() pGraphics->SetTexture(diffuseSlot, nullptr); //Remove the default RT from input //Render to the default (screen) RT pGraphics->SetRenderTarget(nullptr); //Default RT pGraphics->SetTexture(diffuseSlot, pOffscreenRT->GetSRV()) pGraphics->DrawQuad(); The problem here is that the second time the application loop comes around, the offscreen rendertarget is still bound as input ShaderResourceView when it gets set as a RenderTargetView because in Urho3D, the state of the RenderTargetView will always be changed before the ShaderResourceViews (see top code snippet) even when I set the SRV to nullptr before using it as a RTV like above causing errors because a resource can't be bound to both input and rendertarget.
      What is usually the solution to this?
    • By MehdiUBP
      I wrote a MatCap shader following this idea:
      Given the image representing the texture, we compute the sample point by taking the dot product of the vertex normal and the camera position and remapping this to [0,1].
      This seems to work well when I look straight at an object with this shader. However, in cases where the camera points slightly on the side, I can see the texture stretch a lot.
      Could anyone give me a hint as how to get a nice matcap shader ?
      Here's what I wrote:
      Shader "Unlit/Matcap"
              _MainTex ("Texture", 2D) = "white" {}
              Tags { "RenderType"="Opaque" }
              LOD 100
                  #pragma vertex vert
                  #pragma fragment frag
                  // make fog work
                  #include "UnityCG.cginc"
                  struct appdata
                      float4 vertex : POSITION;
                      float3 normal : NORMAL;
                  struct v2f
                      float2 worldNormal : TEXCOORD0;
                      float4 vertex : SV_POSITION;
                  sampler2D _MainTex;            
                  v2f vert (appdata v)
                      v2f o;
                      o.vertex = UnityObjectToClipPos(v.vertex);
                      o.worldNormal = mul((float3x3)UNITY_MATRIX_V, UnityObjectToWorldNormal(v.normal)).xy*0.3 + 0.5;  //UnityObjectToClipPos(v.normal)*0.5 + 0.5;
                      return o;
                  fixed4 frag (v2f i) : SV_Target
                      // sample the texture
                      fixed4 col = tex2D(_MainTex, i.worldNormal);
                      // apply fog
                      return col;
  • Advertisement
  • Advertisement
Sign in to follow this  

DX11 Picking in DX11

This topic is 1820 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

If you intended to correct an error in the post then please contact us.

Recommended Posts


I'm trying to make picking working following this tutorial: http://www.rastertek.com/dx11tut47.html


I'm not sure is it me or the author confuses spaces at the end of this tutorial? Can someone have a fresh look at this? Namely he states that multyplying vector by inverse view matrix we get the result in view space. Shouldn't it be in world space? And then we go from world into object space and there make final test? His ray intersection doesn't take into account sphere position so final test looks like it's in object space, but he also says it's in world space... So yeah, thoughts?

Edited by keym

Share this post

Link to post
Share on other sites

As far as I understand things, a typical view matrix is actually a "inverted" in the sense that if the camera matrix is in the world space, then the required matrix to transform things from world space to the camera's space is actually "inverse camera matrix" or the view matrix or inverse view matrix in this case... to make things complicated. It is just a case of "confusing naming". I use naming "camera matrix" to define camera's location and direction in world space and view matrix is actually the inverted camera matrix.


You can confirm this from many code samples where the view matrix is constructed. Just rarely the code uses the actual matrix inversion, since in the view matrix case the inverse can be calculated easily.


Yes, in the code the the ray is transformed to the local/object space by the inverse world matrix of the sphere. The beauty of things is that in the local space the sphere is located at origo (0,0,0) so translation doesn't have to be accounted in the ray-sphere intersection test.


The advantage of this technique is that it supports also things like scaling / non-uniform scaling for the world matrix. The ray-sphere test remains always the same, since it's just the ray's position and direction changing. 



Edited by kauna

Share this post

Link to post
Share on other sites

Well... shouldn't this be that simple:


object space ----[world a.k.a. model matrix]----> world space

world space ----[view a.k.a. camera matrix]----> view space

view space ----[projection matrix]----> clip space


object space <----[inverse world a.k.a. model matrix]---- world space

world space <----[inverse view a.k.a. camera matrix]---- view space

view space <----[inverse projection matrix]---- clip space




Anyways, this is how it *seems right* to me, but I'm not a guru here. Maybe I'm being picky ;) about naming and that was not the intention of this topic (but still I wanted to clarify naming before I ask my question(s) and make more confusion).


So, the reason I post is because (obviously) I have a problem with picking. The issue here is that in my renderer I use right hand coordinate system, like in OpenGL (for sake of compatibility, I have OGL renderer in this app too and I don't want to negate every needed value to get the same result, it would only make more future errors).


So I construct my projection matrix using D3DXMatrixPerspectiveFovRH() and view matrix using D3DXMatrixLookAtRH(). Before sending them to HLSL I transpose them (for some reason I have to do this, otherwise I get incorrect results [DX stores matrices in row major, but in HLSL they need to be in column major?]). All is sweet and dandy until picking occurs. I'm pretty sure that I'm doing something wrong, because this is my first attempt with renderer independent picking. I follow what's in the tutorial but intersection test gives incorrect results. For sake of simplicity my sphere is at (0,0,0) so I don't have to care about world and invWorld matrices. I'm guessing that something is wrong with my matrices but it's hard to track down.


Also I'm not sure what's going on here (tutorial):


// Adjust the points using the projection matrix to account for the aspect ratio of the viewport.
pointX = pointX / projectionMatrix._11;
pointY = pointY / projectionMatrix._22;

and how exactly the unprojecting part works. I mean I have mouse coordinates that I rescale into -1, 1 range but how do I get from vec2 to vec3? Where does the 3rd component come from?

Share this post

Link to post
Share on other sites



Looks like all my math was ok but I forgot one thing - my rendering WinAPi control has an offset in x,y (cause I have sidebar and other stuff on the side) and I forgot to take that into account when reading mouse position over the viewport. For instance I got [0,0] at the origin of the window, not the rendering control. Now all works well. Thanks for looking.

Share this post

Link to post
Share on other sites
Sign in to follow this  

  • Advertisement