• Advertisement

# DX11 Picking in DX11

This topic is 1759 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

If you intended to correct an error in the post then please contact us.

## Recommended Posts

Hello,

I'm trying to make picking working following this tutorial: http://www.rastertek.com/dx11tut47.html

I'm not sure is it me or the author confuses spaces at the end of this tutorial? Can someone have a fresh look at this? Namely he states that multyplying vector by inverse view matrix we get the result in view space. Shouldn't it be in world space? And then we go from world into object space and there make final test? His ray intersection doesn't take into account sphere position so final test looks like it's in object space, but he also says it's in world space... So yeah, thoughts?

Edited by keym

#### Share this post

##### Share on other sites
Advertisement

As far as I understand things, a typical view matrix is actually a "inverted" in the sense that if the camera matrix is in the world space, then the required matrix to transform things from world space to the camera's space is actually "inverse camera matrix" or the view matrix or inverse view matrix in this case... to make things complicated. It is just a case of "confusing naming". I use naming "camera matrix" to define camera's location and direction in world space and view matrix is actually the inverted camera matrix.

You can confirm this from many code samples where the view matrix is constructed. Just rarely the code uses the actual matrix inversion, since in the view matrix case the inverse can be calculated easily.

Yes, in the code the the ray is transformed to the local/object space by the inverse world matrix of the sphere. The beauty of things is that in the local space the sphere is located at origo (0,0,0) so translation doesn't have to be accounted in the ray-sphere intersection test.

The advantage of this technique is that it supports also things like scaling / non-uniform scaling for the world matrix. The ray-sphere test remains always the same, since it's just the ray's position and direction changing.

Cheers!

Edited by kauna

#### Share this post

##### Share on other sites

Well... shouldn't this be that simple:

object space ----[world a.k.a. model matrix]----> world space

world space ----[view a.k.a. camera matrix]----> view space

view space ----[projection matrix]----> clip space

object space <----[inverse world a.k.a. model matrix]---- world space

world space <----[inverse view a.k.a. camera matrix]---- view space

view space <----[inverse projection matrix]---- clip space

?

Anyways, this is how it *seems right* to me, but I'm not a guru here. Maybe I'm being picky ;) about naming and that was not the intention of this topic (but still I wanted to clarify naming before I ask my question(s) and make more confusion).

So, the reason I post is because (obviously) I have a problem with picking. The issue here is that in my renderer I use right hand coordinate system, like in OpenGL (for sake of compatibility, I have OGL renderer in this app too and I don't want to negate every needed value to get the same result, it would only make more future errors).

So I construct my projection matrix using D3DXMatrixPerspectiveFovRH() and view matrix using D3DXMatrixLookAtRH(). Before sending them to HLSL I transpose them (for some reason I have to do this, otherwise I get incorrect results [DX stores matrices in row major, but in HLSL they need to be in column major?]). All is sweet and dandy until picking occurs. I'm pretty sure that I'm doing something wrong, because this is my first attempt with renderer independent picking. I follow what's in the tutorial but intersection test gives incorrect results. For sake of simplicity my sphere is at (0,0,0) so I don't have to care about world and invWorld matrices. I'm guessing that something is wrong with my matrices but it's hard to track down.

Also I'm not sure what's going on here (tutorial):

// Adjust the points using the projection matrix to account for the aspect ratio of the viewport.
m_D3D->GetProjectionMatrix(projectionMatrix);
pointX = pointX / projectionMatrix._11;
pointY = pointY / projectionMatrix._22;


and how exactly the unprojecting part works. I mean I have mouse coordinates that I rescale into -1, 1 range but how do I get from vec2 to vec3? Where does the 3rd component come from?

#### Share this post

##### Share on other sites

Solved.

Looks like all my math was ok but I forgot one thing - my rendering WinAPi control has an offset in x,y (cause I have sidebar and other stuff on the side) and I forgot to take that into account when reading mouse position over the viewport. For instance I got [0,0] at the origin of the window, not the rendering control. Now all works well. Thanks for looking.

#### Share this post

##### Share on other sites

• Advertisement
• Advertisement
• ### Popular Now

• 11
• 9
• 16
• 18
• 10
• Advertisement
• ### Similar Content

• I wanted to see how others are currently handling descriptor heap updates and management.
I've read a few articles and there tends to be three major strategies :
1 ) You split up descriptor heaps per shader stage ( i.e one for vertex shader , pixel , hull, etc)
2) You have one descriptor heap for an entire pipeline
3) You split up descriptor heaps for update each update frequency (i.e EResourceSet_PerInstance , EResourceSet_PerPass , EResourceSet_PerMaterial, etc)
The benefits of the first two approaches is that it makes it easier to port current code, and descriptor / resource descriptor management and updating tends to be easier to manage, but it seems to be not as efficient.
The benefits of the third approach seems to be that it's the most efficient because you only manage and update objects when they change.

• hi,
until now i use typical vertexshader approach for skinning with a Constantbuffer containing the transform matrix for the bones and an the vertexbuffer containing bone index and bone weight.
Now i have implemented realtime environment  probe cubemaping so i have to render my scene from many point of views and the time for skinning takes too long because it is recalculated for every side of the cubemap.
For Info i am working on Win7 an therefore use one Shadermodel 5.0 not 5.x that have more options, or is there a way to use 5.x in Win 7
My Graphic Card is Directx 12 compatible NVidia GTX 960
the member turanszkij has posted a good for me understandable compute shader. ( for Info: in his engine he uses an optimized version of it )
https://turanszkij.wordpress.com/2017/09/09/skinning-in-compute-shader/
Now my questions
is it possible to feed the compute shader with my orignial vertexbuffer or do i have to copy it in several ByteAdressBuffers as implemented in the following code ?
the same question is about the constant buffer of the matrixes
my more urgent question is how do i feed my normal pipeline with the result of the compute Shader which are 2 RWByteAddressBuffers that contain position an normal
for example i could use 2 vertexbuffer bindings
1 containing only the uv coordinates
2.containing position and normal
How do i copy from the RWByteAddressBuffers to the vertexbuffer ?

(Code from turanszkij )
Here is my shader implementation for skinning a mesh in a compute shader:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 struct Bone { float4x4 pose; }; StructuredBuffer<Bone> boneBuffer;   ByteAddressBuffer vertexBuffer_POS; // T-Pose pos ByteAddressBuffer vertexBuffer_NOR; // T-Pose normal ByteAddressBuffer vertexBuffer_WEI; // bone weights ByteAddressBuffer vertexBuffer_BON; // bone indices   RWByteAddressBuffer streamoutBuffer_POS; // skinned pos RWByteAddressBuffer streamoutBuffer_NOR; // skinned normal RWByteAddressBuffer streamoutBuffer_PRE; // previous frame skinned pos   inline void Skinning(inout float4 pos, inout float4 nor, in float4 inBon, in float4 inWei) {  float4 p = 0, pp = 0;  float3 n = 0;  float4x4 m;  float3x3 m3;  float weisum = 0;   // force loop to reduce register pressure  // though this way we can not interleave TEX - ALU operations  [loop]  for (uint i = 0; ((i &lt; 4) &amp;&amp; (weisum&lt;1.0f)); ++i)  {  m = boneBuffer[(uint)inBon].pose;  m3 = (float3x3)m;   p += mul(float4(pos.xyz, 1), m)*inWei;  n += mul(nor.xyz, m3)*inWei;   weisum += inWei;  }   bool w = any(inWei);  pos.xyz = w ? p.xyz : pos.xyz;  nor.xyz = w ? n : nor.xyz; }   [numthreads(1024, 1, 1)] void main( uint3 DTid : SV_DispatchThreadID ) {  const uint fetchAddress = DTid.x * 16; // stride is 16 bytes for each vertex buffer now...   uint4 pos_u = vertexBuffer_POS.Load4(fetchAddress);  uint4 nor_u = vertexBuffer_NOR.Load4(fetchAddress);  uint4 wei_u = vertexBuffer_WEI.Load4(fetchAddress);  uint4 bon_u = vertexBuffer_BON.Load4(fetchAddress);   float4 pos = asfloat(pos_u);  float4 nor = asfloat(nor_u);  float4 wei = asfloat(wei_u);  float4 bon = asfloat(bon_u);   Skinning(pos, nor, bon, wei);   pos_u = asuint(pos);  nor_u = asuint(nor);   // copy prev frame current pos to current frame prev pos streamoutBuffer_PRE.Store4(fetchAddress, streamoutBuffer_POS.Load4(fetchAddress)); // write out skinned props:  streamoutBuffer_POS.Store4(fetchAddress, pos_u);  streamoutBuffer_NOR.Store4(fetchAddress, nor_u); }

• Hi, can someone please explain why this is giving an assertion EyePosition!=0 exception?

_lightBufferVS->viewMatrix = DirectX::XMMatrixLookAtLH(XMLoadFloat3(&_lightBufferVS->position), XMLoadFloat3(&_lookAt), XMLoadFloat3(&up));
It looks like DirectX doesnt want the 2nd parameter to be a zero vector in the assertion, but I passed in a zero vector with this exact same code in another program and it ran just fine. (Here is the version of the code that worked - note XMLoadFloat3(&m_lookAt) parameter value is (0,0,0) at runtime - I debugged it - but it throws no exceptions.
m_viewMatrix = DirectX::XMMatrixLookAtLH(XMLoadFloat3(&m_position), XMLoadFloat3(&m_lookAt), XMLoadFloat3(&up)); Here is the repo for the broken code (See LightClass) https://github.com/mister51213/DirectX11Engine/blob/master/DirectX11Engine/LightClass.cpp
and here is the repo with the alternative version of the code that is working with a value of (0,0,0) for the second parameter.
https://github.com/mister51213/DX11Port_SoftShadows/blob/master/Engine/lightclass.cpp

• Hi, can somebody please tell me in clear simple steps how to debug and step through an hlsl shader file?
I already did Debug > Start Graphics Debugging > then captured some frames from Visual Studio and
double clicked on the frame to open it, but no idea where to go from there.

I've been searching for hours and there's no information on this, not even on the Microsoft Website!
They say "open the  Graphics Pixel History window" but there is no such window!
Then they say, in the "Pipeline Stages choose Start Debugging"  but the Start Debugging option is nowhere to be found in the whole interface.
Also, how do I even open the hlsl file that I want to set a break point in from inside the Graphics Debugger?

All I want to do is set a break point in a specific hlsl file, step thru it, and see the data, but this is so unbelievably complicated
and Microsoft's instructions are horrible! Somebody please, please help.

• I finally ported Rastertek's tutorial # 42 on soft shadows and blur shading. This tutorial has a ton of really useful effects and there's no working version anywhere online.
Unfortunately it just draws a black screen. Not sure what's causing it. I'm guessing the camera or ortho matrix transforms are wrong, light directions, or maybe texture resources not being properly initialized.  I didnt change any of the variables though, only upgraded all types and functions DirectX3DVector3 to XMFLOAT3, and used DirectXTK for texture loading. If anyone is willing to take a look at what might be causing the black screen, maybe something pops out to you, let me know, thanks.
https://github.com/mister51213/DX11Port_SoftShadows

Also, for reference, here's tutorial #40 which has normal shadows but no blur, which I also ported, and it works perfectly.
https://github.com/mister51213/DX11Port_ShadowMapping

• Advertisement