• Advertisement
  • Popular Tags

  • Popular Now

  • Advertisement
  • Similar Content

    • By fs1
      I have been trying to see how the ID3DInclude, and how its methods Open and Close work.
      I would like to add a custom path for the D3DCompile function to search for some of my includes.
      I have not found any working example. Could someone point me on how to implement these functions? I would like D3DCompile to look at a custom C:\Folder path for some of the include files.
      Thanks
    • By stale
      I'm continuing to learn more about terrain rendering, and so far I've managed to load in a heightmap and render it as a tessellated wireframe (following Frank Luna's DX11 book). However, I'm getting some really weird behavior where a large section of the wireframe is being rendered with a yellow color, even though my pixel shader is hard coded to output white. 

      The parts of the mesh that are discolored changes as well, as pictured below (mesh is being clipped by far plane).

      Here is my pixel shader. As mentioned, I simply hard code it to output white:
      float PS(DOUT pin) : SV_Target { return float4(1.0f, 1.0f, 1.0f, 1.0f); } I'm completely lost on what could be causing this, so any help in the right direction would be greatly appreciated. If I can help by providing more information please let me know.
    • By evelyn4you
      Hello,
      i try to implement voxel cone tracing in my game engine.
      I have read many publications about this, but some crucial portions are still not clear to me.
      At first step i try to emplement the easiest "poor mans" method
      a.  my test scene "Sponza Atrium" is voxelized completetly in a static voxel grid 128^3 ( structured buffer contains albedo)
      b. i dont care about "conservative rasterization" and dont use any sparse voxel access structure
      c. every voxel does have the same color for every side ( top, bottom, front .. )
      d.  one directional light injects light to the voxels ( another stuctured buffer )
      I will try to say what i think is correct ( please correct me )
      GI lighting a given vertecie  in a ideal method
      A.  we would shoot many ( e.g. 1000 ) rays in the half hemisphere which is oriented according to the normal of that vertecie
      B.  we would take into account every occluder ( which is very much work load) and sample the color from the hit point.
      C. according to the angle between ray and the vertecie normal we would weigth ( cosin ) the color and sum up all samples and devide by the count of rays
      Voxel GI lighting
      In priciple we want to do the same thing with our voxel structure.
      Even if we would know where the correct hit points of the vertecie are we would have the task to calculate the weighted sum of many voxels.
      Saving time for weighted summing up of colors of each voxel
      To save the time for weighted summing up of colors of each voxel we build bricks or clusters.
      Every 8 neigbour voxels make a "cluster voxel" of level 1, ( this is done recursively for many levels ).
      The color of a side of a "cluster voxel" is the average of the colors of the four containing voxels sides with the same orientation.

      After having done this we can sample the far away parts just by sampling the coresponding "cluster voxel with the coresponding level" and get the summed up color.
      Actually this process is done be mip mapping a texture that contains the colors of the voxels which places the color of the neighbouring voxels also near by in the texture.
      Cone tracing, howto ??
      Here my understanding is confus ?? How is the voxel structure efficiently traced.
      I simply cannot understand how the occlusion problem is fastly solved so that we know which single voxel or "cluster voxel" of which level we have to sample.
      Supposed,  i am in a dark room that is filled with many boxes of different kind of sizes an i have a pocket lamp e.g. with a pyramid formed light cone
      - i would see some single voxels near or far
      - i would also see many different kind of boxes "clustered voxels" of different sizes which are partly occluded
      How do i make a weighted sum of this ligting area ??
      e.g. if i want to sample a "clustered voxel level 4" i have to take into account how much per cent of the area of this "clustered voxel" is occluded.
      Please be patient with me, i really try to understand but maybe i need some more explanation than others
      best regards evelyn
       
       
    • By Endemoniada

      Hi guys, when I do picking followed by ray-plane intersection the results are all wrong. I am pretty sure my ray-plane intersection is correct so I'll just show the picking part. Please take a look:
       
      // get projection_matrix DirectX::XMFLOAT4X4 mat; DirectX::XMStoreFloat4x4(&mat, projection_matrix); float2 v; v.x = (((2.0f * (float)mouse_x) / (float)screen_width) - 1.0f) / mat._11; v.y = -(((2.0f * (float)mouse_y) / (float)screen_height) - 1.0f) / mat._22; // get inverse of view_matrix DirectX::XMMATRIX inv_view = DirectX::XMMatrixInverse(nullptr, view_matrix); DirectX::XMStoreFloat4x4(&mat, inv_view); // create ray origin (camera position) float3 ray_origin; ray_origin.x = mat._41; ray_origin.y = mat._42; ray_origin.z = mat._43; // create ray direction float3 ray_dir; ray_dir.x = v.x * mat._11 + v.y * mat._21 + mat._31; ray_dir.y = v.x * mat._12 + v.y * mat._22 + mat._32; ray_dir.z = v.x * mat._13 + v.y * mat._23 + mat._33;  
      That should give me a ray origin and direction in world space but when I do the ray-plane intersection the results are all wrong.
      If I click on the bottom half of the screen ray_dir.z becomes negative (more so as I click lower). I don't understand how that can be, shouldn't it always be pointing down the z-axis ?
      I had this working in the past but I can't find my old code
      Please help. Thank you.
    • By turanszkij
      Hi,
      I finally managed to get the DX11 emulating Vulkan device working but everything is flipped vertically now because Vulkan has a different clipping space. What are the best practices out there to keep these implementation consistent? I tried using a vertically flipped viewport, and while it works on Nvidia 1050, the Vulkan debug layer is throwing error messages that this is not supported in the spec so it might not work on others. There is also the possibility to flip the clip scpace position Y coordinate before writing out with vertex shader, but that requires changing and recompiling every shader. I could also bake it into the camera projection matrices, though I want to avoid that because then I need to track down for the whole engine where I upload matrices... Any chance of an easy extension or something? If not, I will probably go with changing the vertex shaders.
  • Advertisement
  • Advertisement
Sign in to follow this  

DX11 Problem rendering 2D images in Direct3D 11

This topic is 1852 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

If you intended to correct an error in the post then please contact us.

Recommended Posts

Hello,
 
I'm new here so please let me know if there is a way in which I can improve the structure of my posts.
 
I've been building a framework using DirectX11 for future use in my game creation endeavors. I have been leaning heavily on the tutorials found here http://www.rastertek.com/tutdx11.html due to my lack of experience with DirectX. I have managed to render a 3d model and explore my space with the camera. I have run into problems rendering a 2d image to the screen as described in this tutorial http://www.rastertek.com/dx11tut11.html. It renders the texture to my window, but the texture changes when the camera is moved. It disappears from view sometimes, and if it is visible it acts as if it is a normal 3d model in the form of a plane. I have gone through my code multiple times but I cannot seem to find my error. Any insight would be much appreciated.

 

#include "GraphicsClass.h"

GraphicsClass::GraphicsClass()
{

	m_d3d = 0;
	m_camera = 0;

}

GraphicsClass::GraphicsClass(const GraphicsClass& other)
{
}

GraphicsClass::~GraphicsClass()
{
}

bool GraphicsClass::Initialize(int screenWidth, int screenHeight, HWND hwnd)
{

	bool result;

	m_screenWidth = screenWidth;
	m_screenHeight = screenHeight;

	m_d3d = new D3DClass();
	if(!m_d3d)
	{

		return false;

	}

	result = m_d3d->Initialize(screenWidth, screenHeight, VSYNC_ENABLED, hwnd, FULL_SCREEN, SCREEN_DEPTH, SCREEN_NEAR);
	if(!result)
	{

		MessageBox(hwnd, (LPCSTR)L"Could not initialize D3D.", (LPCSTR)L"Error", MB_OK);
		return false;

	}

	m_camera = new Camera;
	if(!m_camera)
	{

		return false;

	}

	m_camera->SetPosition(0.0f, 0.0f, -10.f);

	return true;

}

void GraphicsClass::Shutdown()
{


	if(m_d3d)
	{

		m_d3d->Shutdown();
		delete m_d3d;
		m_d3d = 0;

	}

	if(m_camera)
	{

		delete m_camera;
		m_camera = 0;

	}

	return;

}

bool GraphicsClass::Frame(Model** model, int numModels, Texture2D** texture, int numTextures, Shader* shader)
{

	bool result;

	result = Render(model, numModels, texture, numTextures, shader);
	if(!result)
	{

		return false;

	}

	return true;

}

bool GraphicsClass::Render(Model** model, int numModels, Texture2D** texture, int numTextures, Shader* shader)
{

	D3DXMATRIX worldMatrix, viewMatrix, projectionMatrix, orthoMatrix;
	bool result;

	m_d3d->BeginScene(0.0f, 0.0f, 0.0f, 1.0f);

	m_camera->Render();

	m_camera->GetViewMatrix(viewMatrix);
	m_d3d->GetWorldMatrix(worldMatrix);
	m_d3d->GetProjectionMatrix(projectionMatrix);
	m_d3d->GetOrthoMatrix(orthoMatrix);

	m_d3d->TurnZBufferOn();

	for(int i = 0; i < numModels; i++)
	{

		if(!model)
		{

			return false;

		}
	
		model->Render(m_d3d->GetDeviceContext());
		
		D3DXVECTOR3 rot = m_camera->GetRotation();
		D3DXMATRIX rotMat;
		D3DXMatrixRotationYawPitchRoll(&rotMat, rot.y, rot.x, rot.z);

		result = shader->Render(m_d3d->GetDeviceContext(), model->GetIndexCount(), worldMatrix, viewMatrix, projectionMatrix, model->GetTexture());
		if(!result)
		{

			return false;

		}

	}

	m_d3d->TurnZBufferOff();

	for(int k = 0; k < numTextures; k++)
	{

		if(!texture[k])
		{

			return false;

		}

		m_d3d->TurnZBufferOff();

		result = texture[k]->Render(m_d3d->GetDeviceContext(), texture[k]->X, texture[k]->Y);
		if(!result)
		{

			return false;

		}

		result = shader->Render(m_d3d->GetDeviceContext(), texture[k]->GetIndexCount(), worldMatrix, viewMatrix, orthoMatrix, texture[k]->GetTexture());
		if(!result)
		{

			return false;

		}

	}

	m_d3d->EndScene();

	return true;

}

Camera* GraphicsClass::GetCamera()
{

	return m_camera;

}

void GraphicsClass::SetCamera(Camera* cam)
{

	m_camera = cam;

	return;

}

ID3D11Device* GraphicsClass::GetDevice()
{

	return m_d3d->GetDevice();

}

int GraphicsClass::GetScreenWidth()
{

	return m_screenWidth;

}

int GraphicsClass::GetScreenHeight()
{

	return m_screenHeight;

}
#include "D3DClass.h"

D3DClass::D3DClass()
{

	m_swapChain = 0;
	m_device = 0;
	m_deviceContext = 0;
	m_depthStencilBuffer = 0;
	m_depthStencilState = 0;
	m_depthStencilView = 0;
	m_disabledStencilState = 0;
	m_rasterState = 0;

}

D3DClass::D3DClass(const D3DClass&)
{
}

D3DClass::~D3DClass()
{
}

bool D3DClass::Initialize(int screenWidth, int screenHeight, bool vsync, HWND hwnd, bool fullScreen, float screenDepth, float screenNear)
{

	HRESULT result;
	IDXGIFactory* factory;
	IDXGIAdapter* adapter;
	IDXGIOutput* adapterOutput;
	unsigned int numModes, i, numerator, denominator, stringLength;
	DXGI_MODE_DESC* displayModeList;
	DXGI_ADAPTER_DESC adapterDesc;
	int error;
	DXGI_SWAP_CHAIN_DESC swapChainDesc;
	D3D_FEATURE_LEVEL featureLevel;
	ID3D11Texture2D* backBufferPtr;
	D3D11_TEXTURE2D_DESC depthBufferDesc;
	D3D11_DEPTH_STENCIL_DESC depthStencilDesc;
	D3D11_DEPTH_STENCIL_DESC depthDisabledStencilDesc;
	D3D11_DEPTH_STENCIL_VIEW_DESC depthStencilViewDesc;
	D3D11_RASTERIZER_DESC rasterDesc;
	D3D11_VIEWPORT viewport;
	float fieldOfView, screenAspect;

	m_vsyncEnabled = vsync;

	result = CreateDXGIFactory(__uuidof(IDXGIFactory), (void**)&factory);
	if(FAILED(result))
	{

		return false;

	}

	result = factory->EnumAdapters(0, &adapter);
	if(FAILED(result))
	{

		return false;

	}

	result = adapter->EnumOutputs(0, &adapterOutput);
	if(FAILED(result))
	{

		return false;

	}

	result = adapterOutput->GetDisplayModeList(DXGI_FORMAT_R8G8B8A8_UNORM, DXGI_ENUM_MODES_INTERLACED, &numModes, NULL);
	if(FAILED(result))
	{
		return false;
	}

	// Create a list to hold all the possible display modes for this monitor/video card combination.
	displayModeList = new DXGI_MODE_DESC[numModes];
	if(!displayModeList)
	{
		return false;
	}

	// Now fill the display mode list structures.
	result = adapterOutput->GetDisplayModeList(DXGI_FORMAT_R8G8B8A8_UNORM, DXGI_ENUM_MODES_INTERLACED, &numModes, displayModeList);
	if(FAILED(result))
	{
		return false;
	}

	// Now go through all the display modes and find the one that matches the screen width and height.
	// When a match is found store the numerator and denominator of the refresh rate for that monitor.
	for(i=0; i<numModes; i++)
	{
		if(displayModeList.Width == (unsigned int)screenWidth)
		{
			if(displayModeList.Height == (unsigned int)screenHeight)
			{
				numerator = displayModeList.RefreshRate.Numerator;
				denominator = displayModeList.RefreshRate.Denominator;
			}
		}
	}

	// Get the adapter (video card) description.
	result = adapter->GetDesc(&adapterDesc);
	if(FAILED(result))
	{
		return false;
	}

	// Store the dedicated video card memory in megabytes.
	m_videoCardMemory = (int)(adapterDesc.DedicatedVideoMemory / 1024 / 1024);

	// Convert the name of the video card to a character array and store it.
	error = wcstombs_s(&stringLength, m_videoCardDescription, 128, adapterDesc.Description, 128);
	if(error != 0)
	{
		return false;
	}

	// Release the display mode list.
	delete [] displayModeList;
	displayModeList = 0;

	// Release the adapter output.
	adapterOutput->Release();
	adapterOutput = 0;

	// Release the adapter.
	adapter->Release();
	adapter = 0;

	// Release the factory.
	factory->Release();
	factory = 0;

	// Initialize the swap chain description.
	ZeroMemory(&swapChainDesc, sizeof(swapChainDesc));

	// Set to a single back buffer.
	swapChainDesc.BufferCount = 1;

	// Set the width and height of the back buffer.
	swapChainDesc.BufferDesc.Width = screenWidth;
	swapChainDesc.BufferDesc.Height = screenHeight;

	// Set regular 32-bit surface for the back buffer.
	swapChainDesc.BufferDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM;

	// Set the refresh rate of the back buffer.
	if(m_vsyncEnabled)
	{
		swapChainDesc.BufferDesc.RefreshRate.Numerator = numerator;
		swapChainDesc.BufferDesc.RefreshRate.Denominator = denominator;
	}
	else
	{
		swapChainDesc.BufferDesc.RefreshRate.Numerator = 0;
		swapChainDesc.BufferDesc.RefreshRate.Denominator = 1;
	}

	// Set the usage of the back buffer.
	swapChainDesc.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT;

	// Set the handle for the window to render to.
	swapChainDesc.OutputWindow = hwnd;

	// Turn multisampling off.
	swapChainDesc.SampleDesc.Count = 1;
	swapChainDesc.SampleDesc.Quality = 0;

	// Set to full screen or windowed mode.
	if(fullScreen)
	{
		swapChainDesc.Windowed = false;
	}
	else
	{
		swapChainDesc.Windowed = true;
	}

	// Set the scan line ordering and scaling to unspecified.
	swapChainDesc.BufferDesc.ScanlineOrdering = DXGI_MODE_SCANLINE_ORDER_UNSPECIFIED;
	swapChainDesc.BufferDesc.Scaling = DXGI_MODE_SCALING_UNSPECIFIED;

	// Discard the back buffer contents after presenting.
	swapChainDesc.SwapEffect = DXGI_SWAP_EFFECT_DISCARD;

	// Don't set the advanced flags.
	swapChainDesc.Flags = 0;

	// Set the feature level to DirectX 11.
	featureLevel = D3D_FEATURE_LEVEL_11_0;

	// Create the swap chain, Direct3D device, and Direct3D device context.
	result = D3D11CreateDeviceAndSwapChain(NULL, D3D_DRIVER_TYPE_HARDWARE, NULL, 0, &featureLevel, 1, D3D11_SDK_VERSION, &swapChainDesc, &m_swapChain, &m_device, NULL, &m_deviceContext);
	if(FAILED(result))
	{
		return false;
	}

	// Get the pointer to the back buffer.
	result = m_swapChain->GetBuffer(0, __uuidof(ID3D11Texture2D), (LPVOID*)&backBufferPtr);
	if(FAILED(result))
	{
		return false;
	}

	// Create the render target view with the back buffer pointer.
	result = m_device->CreateRenderTargetView(backBufferPtr, NULL, &m_renderTargetView);
	if(FAILED(result))
	{
		return false;
	}

	// Release pointer to the back buffer as we no longer need it.
	backBufferPtr->Release();
	backBufferPtr = 0;

	// Initialize the description of the depth buffer.
	ZeroMemory(&depthBufferDesc, sizeof(depthBufferDesc));

	// Set up the description of the depth buffer.
	depthBufferDesc.Width = screenWidth;
	depthBufferDesc.Height = screenHeight;
	depthBufferDesc.MipLevels = 1;
	depthBufferDesc.ArraySize = 1;
	depthBufferDesc.Format = DXGI_FORMAT_D24_UNORM_S8_UINT;
	depthBufferDesc.SampleDesc.Count = 1;
	depthBufferDesc.SampleDesc.Quality = 0;
	depthBufferDesc.Usage = D3D11_USAGE_DEFAULT;
	depthBufferDesc.BindFlags = D3D11_BIND_DEPTH_STENCIL;
	depthBufferDesc.CPUAccessFlags = 0;
	depthBufferDesc.MiscFlags = 0;

	result = m_device->CreateTexture2D(&depthBufferDesc, NULL, &m_depthStencilBuffer);
	if(FAILED(result))
	{
		return false;
	}

	// Initialize the description of the stencil state.
	ZeroMemory(&depthStencilDesc, sizeof(depthStencilDesc));

	// Set up the description of the stencil state.
	depthStencilDesc.DepthEnable = true;
	depthStencilDesc.DepthWriteMask = D3D11_DEPTH_WRITE_MASK_ALL;
	depthStencilDesc.DepthFunc = D3D11_COMPARISON_LESS;

	depthStencilDesc.StencilEnable = true;
	depthStencilDesc.StencilReadMask = 0xFF;
	depthStencilDesc.StencilWriteMask = 0xFF;

	// Stencil operations if pixel is front-facing.
	depthStencilDesc.FrontFace.StencilFailOp = D3D11_STENCIL_OP_KEEP;
	depthStencilDesc.FrontFace.StencilDepthFailOp = D3D11_STENCIL_OP_INCR;
	depthStencilDesc.FrontFace.StencilPassOp = D3D11_STENCIL_OP_KEEP;
	depthStencilDesc.FrontFace.StencilFunc = D3D11_COMPARISON_ALWAYS;

	// Stencil operations if pixel is back-facing.
	depthStencilDesc.BackFace.StencilFailOp = D3D11_STENCIL_OP_KEEP;
	depthStencilDesc.BackFace.StencilDepthFailOp = D3D11_STENCIL_OP_DECR;
	depthStencilDesc.BackFace.StencilPassOp = D3D11_STENCIL_OP_KEEP;
	depthStencilDesc.BackFace.StencilFunc = D3D11_COMPARISON_ALWAYS;

	// Create the depth stencil state.
	result = m_device->CreateDepthStencilState(&depthStencilDesc, &m_depthStencilState);
	if(FAILED(result))
	{
		return false;
	}

	ZeroMemory(&depthDisabledStencilDesc, sizeof(depthDisabledStencilDesc));

	// Now create a second depth stencil state which turns off the Z buffer for 2D rendering.  The only difference is 
	// that DepthEnable is set to false, all other parameters are the same as the other depth stencil state.
	depthDisabledStencilDesc.DepthEnable = false;
	depthDisabledStencilDesc.DepthWriteMask = D3D11_DEPTH_WRITE_MASK_ALL;
	depthDisabledStencilDesc.DepthFunc = D3D11_COMPARISON_LESS;
	depthDisabledStencilDesc.StencilEnable = true;
	depthDisabledStencilDesc.StencilReadMask = 0xFF;
	depthDisabledStencilDesc.StencilWriteMask = 0xFF;
	depthDisabledStencilDesc.FrontFace.StencilFailOp = D3D11_STENCIL_OP_KEEP;
	depthDisabledStencilDesc.FrontFace.StencilDepthFailOp = D3D11_STENCIL_OP_INCR;
	depthDisabledStencilDesc.FrontFace.StencilPassOp = D3D11_STENCIL_OP_KEEP;
	depthDisabledStencilDesc.FrontFace.StencilFunc = D3D11_COMPARISON_ALWAYS;
	depthDisabledStencilDesc.BackFace.StencilFailOp = D3D11_STENCIL_OP_KEEP;
	depthDisabledStencilDesc.BackFace.StencilDepthFailOp = D3D11_STENCIL_OP_DECR;
	depthDisabledStencilDesc.BackFace.StencilPassOp = D3D11_STENCIL_OP_KEEP;
	depthDisabledStencilDesc.BackFace.StencilFunc = D3D11_COMPARISON_ALWAYS;

	result = m_device->CreateDepthStencilState(&depthDisabledStencilDesc, &m_disabledStencilState);
	if(FAILED(result))
	{

		return false;

	}

	// Set the depth stencil state.
	m_deviceContext->OMSetDepthStencilState(m_depthStencilState, 1);

	// Initailze the depth stencil view.
	ZeroMemory(&depthStencilViewDesc, sizeof(depthStencilViewDesc));

	// Set up the depth stencil view description.
	depthStencilViewDesc.Format = DXGI_FORMAT_D24_UNORM_S8_UINT;
	depthStencilViewDesc.ViewDimension = D3D11_DSV_DIMENSION_TEXTURE2D;
	depthStencilViewDesc.Texture2D.MipSlice = 0;

	// Create the depth stencil view.
	result = m_device->CreateDepthStencilView(m_depthStencilBuffer, &depthStencilViewDesc, &m_depthStencilView);
	if(FAILED(result))
	{
		return false;
	}

	// Bind the render target view and depth stencil buffer to the output render pipeline.
	m_deviceContext->OMSetRenderTargets(1, &m_renderTargetView, m_depthStencilView);

	// Setup the raster description which will determine how and what polygons will be drawn.
	rasterDesc.AntialiasedLineEnable = false;
	rasterDesc.CullMode = D3D11_CULL_BACK;
	rasterDesc.DepthBias = 0;
	rasterDesc.DepthBiasClamp = 0.0f;
	rasterDesc.DepthClipEnable = true;
	rasterDesc.FillMode = D3D11_FILL_SOLID;
	rasterDesc.FrontCounterClockwise = false;
	rasterDesc.MultisampleEnable = false;
	rasterDesc.ScissorEnable = false;
	rasterDesc.SlopeScaledDepthBias = 0.0f;

	// Create the rasterizer state from the description we just filled out.
	result = m_device->CreateRasterizerState(&rasterDesc, &m_rasterState);
	if(FAILED(result))
	{
		return false;
	}

	// Now set the rasterizer state.
	m_deviceContext->RSSetState(m_rasterState);

	// Setup the viewport for rendering.
	viewport.Width = (float)screenWidth;
	viewport.Height = (float)screenHeight;
	viewport.MinDepth = 0.0f;
	viewport.MaxDepth = 1.0f;
	viewport.TopLeftX = 0.0f;
	viewport.TopLeftY = 0.0f;

	// Create the viewport.
	m_deviceContext->RSSetViewports(1, &viewport);

	// Setup the projection matrix.
	fieldOfView = (float)D3DX_PI / 4.0f;
	screenAspect = (float)screenWidth / (float)screenHeight;

	// Create the projection matrix for 3D rendering.
	D3DXMatrixPerspectiveFovLH(&m_projectionMatrix, fieldOfView, screenAspect, screenNear, screenDepth);

	// Initialize the world matrix to the identity matrix.
	D3DXMatrixIdentity(&m_worldMatrix);

	// Create an orthographic projection matrix for 2D rendering.
	D3DXMatrixOrthoLH(&m_orthoMatrix, (float)screenWidth, (float)screenHeight, screenNear, screenDepth);

	return true;

}

void D3DClass::Shutdown()
{

	if(m_swapChain)
	{

		m_swapChain->SetFullscreenState(false, NULL);

	}

	if(m_rasterState)
	{

		m_rasterState->Release();
		m_rasterState = 0;

	}

	if(m_depthStencilView)
	{

		m_depthStencilView->Release();
		m_depthStencilView = 0;

	}

	if(m_depthStencilState)
	{

		m_depthStencilState->Release();
		m_depthStencilState = 0;

	}

	if(m_disabledStencilState)
	{

		m_disabledStencilState->Release();
		m_disabledStencilState = 0;

	}
	if(m_depthStencilBuffer)
	{

		m_depthStencilBuffer->Release();
		m_depthStencilBuffer = 0;

	}

	if(m_renderTargetView)
	{

		m_renderTargetView->Release();
		m_renderTargetView = 0;

	}

	if(m_deviceContext)
	{

		m_deviceContext->Release();
		m_deviceContext = 0;

	}

	if(m_device)
	{

		m_device->Release();
		m_device = 0;

	}

	if(m_swapChain)
	{

		m_swapChain->Release();
		m_swapChain = 0;

	}

	return;

}

void D3DClass::BeginScene(float R, float G, float B, float A)
{

	float color[4];

	color[0] = R;
	color[1] = G;
	color[2] = B;
	color[3] = A;

	m_deviceContext->ClearRenderTargetView(m_renderTargetView, color);

	m_deviceContext->ClearDepthStencilView(m_depthStencilView, D3D11_CLEAR_DEPTH, 1.0f, 0);

	return;

}

void D3DClass::EndScene()
{

	if(m_vsyncEnabled)
	{

		m_swapChain->Present(1, 0);

	}
	else
	{

		m_swapChain->Present(0, 0);

	}

	return;

}

ID3D11Device* D3DClass::GetDevice()
{

	return m_device;

}

ID3D11DeviceContext* D3DClass::GetDeviceContext()
{

	return m_deviceContext;

}

void D3DClass::GetProjectionMatrix(D3DXMATRIX& projectionMatrix)
{

	projectionMatrix = m_projectionMatrix;
	return;

}

void D3DClass::GetWorldMatrix(D3DXMATRIX& worldMatrix)
{

	worldMatrix = m_worldMatrix;
	return;

}

void D3DClass::GetOrthoMatrix(D3DXMATRIX& orthoMatrix)
{

	orthoMatrix = m_orthoMatrix;
	return;

}

void D3DClass::GetVideoCardInfo(char* cardName, int& memory)
{

	strcpy_s(cardName, 128, m_videoCardDescription);
	memory = m_videoCardMemory;
	return;

}

void D3DClass::TurnZBufferOff()
{

	m_deviceContext->OMSetDepthStencilState(m_disabledStencilState, 1);

	return;

}

void D3DClass::TurnZBufferOn()
{

	m_deviceContext->OMSetDepthStencilState(m_depthStencilState, 1);

	return;

}
#include "Texture2D.h"

Texture2D::Texture2D()
{

	m_vertexBuffer = 0;
	m_indexBuffer = 0;
	m_texture = 0;

}

Texture2D::Texture2D(const Texture2D&)
{
}

Texture2D::~Texture2D()
{
}

bool Texture2D::Initialize(ID3D11Device* device, int screenWidth, int screenHeight, WCHAR* texturefilename, int textureWidth, int textureHeight)
{

	bool result;

	m_screenWidth = screenWidth;
	m_screenheight = screenHeight;

	m_imageWidth = textureWidth;
	m_imageHeight = textureHeight;

	m_previousXPos = -1;
	m_previousYPos = -1;

	result = InitializeBuffers(device);
	if(!result)
	{

		return false;

	}

	result = LoadTexture(device, texturefilename);
	if(!result)
	{

		return false;

	}

	return true;

}

void Texture2D::Shutdown()
{

	ReleaseTexture();

	ShutdownBuffers();

	return;

}

bool Texture2D::Render(ID3D11DeviceContext* deviceContext, int positionX, int positionY)
{

	bool result;

	result = UpdateBuffers(deviceContext, positionX, positionY);
	if(!result)
	{

		return false;

	}

	RenderBuffers(deviceContext);

	return true;

}

int Texture2D::GetIndexCount()
{

	return m_indexCount;

}

ID3D11ShaderResourceView* Texture2D::GetTexture()
{

	return m_texture->GetTexture();

}

bool Texture2D::InitializeBuffers(ID3D11Device* device)
{

	Vertex* vertices;
	unsigned long* indices;
	D3D11_BUFFER_DESC vertexBufferDesc, indexBufferDesc;
	D3D11_SUBRESOURCE_DATA vertexData, indexData;
	HRESULT result;

	m_vertexCount = 6;
	m_indexCount = m_vertexCount;

	vertices = new Vertex[m_vertexCount];
	if(!vertices)
	{

		return false;

	}

	indices = new unsigned long[m_indexCount];
	if(!indices)
	{

		return false;

	}

	memset(vertices, 0, sizeof(Vertex) * m_vertexCount);

	for(int i = 0; i < m_indexCount; i++)
	{

		indices = i;

	}

	vertexBufferDesc.Usage = D3D11_USAGE_DYNAMIC;
	vertexBufferDesc.ByteWidth = sizeof(Vertex) * m_vertexCount;
	vertexBufferDesc.BindFlags = D3D11_BIND_VERTEX_BUFFER;
	vertexBufferDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
	vertexBufferDesc.MiscFlags = 0;
	vertexBufferDesc.StructureByteStride = 0;

	vertexData.pSysMem = vertices;
	vertexData.SysMemPitch = 0;
	vertexData.SysMemSlicePitch = 0;

	result = device->CreateBuffer(&vertexBufferDesc, &vertexData, &m_vertexBuffer);
	if(FAILED(result))
	{

		return false;

	}

	indexBufferDesc.Usage = D3D11_USAGE_DEFAULT;
	indexBufferDesc.ByteWidth = sizeof(unsigned long) * m_indexCount;
	indexBufferDesc.BindFlags = D3D11_BIND_INDEX_BUFFER;
	indexBufferDesc.CPUAccessFlags = 0;
	indexBufferDesc.MiscFlags = 0;
	indexBufferDesc.StructureByteStride = 0;

	indexData.pSysMem = indices;
	indexData.SysMemPitch = 0;
	indexData.SysMemSlicePitch = 0;

	result = device->CreateBuffer(&indexBufferDesc, &indexData, &m_indexBuffer);
	if(FAILED(result))
	{

		return false;

	}

	delete[] vertices;
	vertices = 0;

	delete[] indices;
	indices = 0;

	return true;

}

void Texture2D::ShutdownBuffers()
{

	if(m_vertexBuffer)
	{

		m_vertexBuffer->Release();
		m_vertexBuffer = 0;

	}

	if(m_indexBuffer)
	{

		m_indexBuffer->Release();
		m_indexBuffer = 0;

	}

	return;

}

bool Texture2D::UpdateBuffers(ID3D11DeviceContext* deviceContext, int XPosition, int YPosition)
{

	float left, right, top, bottom;
	Vertex* vertices;
	D3D11_MAPPED_SUBRESOURCE mappedResource;
	Vertex* verticesPtr;
	HRESULT result;

	if(XPosition == m_previousXPos && YPosition == m_previousYPos)
	{

		return true;

	}

	m_previousXPos = XPosition;
	m_previousYPos = YPosition;

	left = (float)((m_screenWidth / 2) * -1) + (float)XPosition;
	right = left + m_imageWidth;

	top = (float)((m_screenheight / 2)) - (float)YPosition;
	bottom = top - (float)m_imageHeight;

	vertices = new Vertex[m_vertexCount];
	if(!vertices)
	{

		return false;

	}

	vertices[0].position = D3DXVECTOR3(left, top, 0.0f);
	vertices[0].texture = D3DXVECTOR2(0.0f, 0.0f);

	vertices[1].position = D3DXVECTOR3(right, bottom, 0.0f);
	vertices[1].texture = D3DXVECTOR2(1.0f, 1.0f);

	vertices[2].position = D3DXVECTOR3(left, bottom, 0.0f);
	vertices[2].texture = D3DXVECTOR2(0.0f, 1.0f);

	vertices[3].position = D3DXVECTOR3(left, top, 0.0f);
	vertices[3].texture = D3DXVECTOR2(0.0f, 0.0f);

	vertices[4].position = D3DXVECTOR3(right, top, 0.0f);
	vertices[4].texture = D3DXVECTOR2(1.0f, 0.0f);

	vertices[5].position = D3DXVECTOR3(right, bottom, 0.0f);
	vertices[5].texture = D3DXVECTOR2(1.0f, 1.0f);

	result = deviceContext->Map(m_vertexBuffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &mappedResource);
	if(FAILED(result))
	{

		return false;

	}

	verticesPtr = (Vertex*)mappedResource.pData;

	memcpy(verticesPtr, (void*)vertices, (sizeof(Vertex) * m_vertexCount));

	deviceContext->Unmap(m_vertexBuffer, 0);

	delete [] vertices;
	vertices = 0;

	return true;

}

void Texture2D::RenderBuffers(ID3D11DeviceContext* deviceContext)
{

	unsigned int stride;
	unsigned int offset;

	stride = sizeof(Vertex);
	offset = 0;

	deviceContext->IASetVertexBuffers(0, 1, &m_vertexBuffer, &stride, &offset);

	deviceContext->IASetIndexBuffer(m_indexBuffer, DXGI_FORMAT_R32_UINT, 0);

	deviceContext->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST);

	return;

}

bool Texture2D::LoadTexture(ID3D11Device* device, WCHAR* filename)
{

	bool result;

	m_texture = new Texture();
	if(!m_texture)
	{

		return false;

	}

	result = m_texture->Initialize(device, filename);
	if(!result)
	{

		return false;

	}


	return true;

}

void Texture2D::ReleaseTexture()
{

	if(m_texture)
	{
		
		m_texture->Shutdown();
		delete m_texture;
		m_texture = 0;

	}

	return;

}

 

Share this post


Link to post
Share on other sites
Advertisement

Sounds like you are multiplying those vertices with the transformation matrices in your vertex shader. You should create and use a separate vertex shader (which simply omits that multiplication) for those polygons.

Share this post


Link to post
Share on other sites

I think Deortuka is on the right track here.  If what you want is the 2D image to appear in what is the equivalent of the near clipping plane (i.e. parallel to the clipping plane) then you have to ensure that all of your vertex depths end up the same in clip space.  So if you are applying a transformation/projection to those vertices, that will affect the clipspace z values, and make them appear like they are a 3D model.

 

On the other hand, if you write a customized vertex shader that always sets z = 0 and w = 1, then the x and y  coordinates can range from [-1,1] and that will simply position the texture within the screen with a flat alignment.

Share this post


Link to post
Share on other sites

Thank you for the help. I was previously using this vertex shader:

 

PixelInputType main(VertexInputType input)
{

	PixelInputType output;

	input.position.w = 1.0f;

	output.position = mul(input.position, worldMatrix);
	output.position = mul(output.position, viewMatrix);
	output.position = mul(output.position, projectionMatrix);

	output.tex = input.tex;

	return output;

}

 

I followed your advice and removed the multiplication by the world and view matrices. I now use this shader:

 

PixelInputType main(VertexInputType input)
{

	PixelInputType output;

	input.position.w = 1.0f;

	output.position = mul(input.position, projectionMatrix);

	output.position.z = 0.0f;

	output.tex = input.tex;

	return output;

}

Share this post


Link to post
Share on other sites
Sign in to follow this  

  • Advertisement