Sign in to follow this  
AngeredBovine

DX11 Problem rendering 2D images in Direct3D 11

Recommended Posts

Hello,
 
I'm new here so please let me know if there is a way in which I can improve the structure of my posts.
 
I've been building a framework using DirectX11 for future use in my game creation endeavors. I have been leaning heavily on the tutorials found here http://www.rastertek.com/tutdx11.html due to my lack of experience with DirectX. I have managed to render a 3d model and explore my space with the camera. I have run into problems rendering a 2d image to the screen as described in this tutorial http://www.rastertek.com/dx11tut11.html. It renders the texture to my window, but the texture changes when the camera is moved. It disappears from view sometimes, and if it is visible it acts as if it is a normal 3d model in the form of a plane. I have gone through my code multiple times but I cannot seem to find my error. Any insight would be much appreciated.

 

#include "GraphicsClass.h"

GraphicsClass::GraphicsClass()
{

	m_d3d = 0;
	m_camera = 0;

}

GraphicsClass::GraphicsClass(const GraphicsClass& other)
{
}

GraphicsClass::~GraphicsClass()
{
}

bool GraphicsClass::Initialize(int screenWidth, int screenHeight, HWND hwnd)
{

	bool result;

	m_screenWidth = screenWidth;
	m_screenHeight = screenHeight;

	m_d3d = new D3DClass();
	if(!m_d3d)
	{

		return false;

	}

	result = m_d3d->Initialize(screenWidth, screenHeight, VSYNC_ENABLED, hwnd, FULL_SCREEN, SCREEN_DEPTH, SCREEN_NEAR);
	if(!result)
	{

		MessageBox(hwnd, (LPCSTR)L"Could not initialize D3D.", (LPCSTR)L"Error", MB_OK);
		return false;

	}

	m_camera = new Camera;
	if(!m_camera)
	{

		return false;

	}

	m_camera->SetPosition(0.0f, 0.0f, -10.f);

	return true;

}

void GraphicsClass::Shutdown()
{


	if(m_d3d)
	{

		m_d3d->Shutdown();
		delete m_d3d;
		m_d3d = 0;

	}

	if(m_camera)
	{

		delete m_camera;
		m_camera = 0;

	}

	return;

}

bool GraphicsClass::Frame(Model** model, int numModels, Texture2D** texture, int numTextures, Shader* shader)
{

	bool result;

	result = Render(model, numModels, texture, numTextures, shader);
	if(!result)
	{

		return false;

	}

	return true;

}

bool GraphicsClass::Render(Model** model, int numModels, Texture2D** texture, int numTextures, Shader* shader)
{

	D3DXMATRIX worldMatrix, viewMatrix, projectionMatrix, orthoMatrix;
	bool result;

	m_d3d->BeginScene(0.0f, 0.0f, 0.0f, 1.0f);

	m_camera->Render();

	m_camera->GetViewMatrix(viewMatrix);
	m_d3d->GetWorldMatrix(worldMatrix);
	m_d3d->GetProjectionMatrix(projectionMatrix);
	m_d3d->GetOrthoMatrix(orthoMatrix);

	m_d3d->TurnZBufferOn();

	for(int i = 0; i < numModels; i++)
	{

		if(!model[i])
		{

			return false;

		}
	
		model[i]->Render(m_d3d->GetDeviceContext());
		
		D3DXVECTOR3 rot = m_camera->GetRotation();
		D3DXMATRIX rotMat;
		D3DXMatrixRotationYawPitchRoll(&rotMat, rot.y, rot.x, rot.z);

		result = shader->Render(m_d3d->GetDeviceContext(), model[i]->GetIndexCount(), worldMatrix, viewMatrix, projectionMatrix, model[i]->GetTexture());
		if(!result)
		{

			return false;

		}

	}

	m_d3d->TurnZBufferOff();

	for(int k = 0; k < numTextures; k++)
	{

		if(!texture[k])
		{

			return false;

		}

		m_d3d->TurnZBufferOff();

		result = texture[k]->Render(m_d3d->GetDeviceContext(), texture[k]->X, texture[k]->Y);
		if(!result)
		{

			return false;

		}

		result = shader->Render(m_d3d->GetDeviceContext(), texture[k]->GetIndexCount(), worldMatrix, viewMatrix, orthoMatrix, texture[k]->GetTexture());
		if(!result)
		{

			return false;

		}

	}

	m_d3d->EndScene();

	return true;

}

Camera* GraphicsClass::GetCamera()
{

	return m_camera;

}

void GraphicsClass::SetCamera(Camera* cam)
{

	m_camera = cam;

	return;

}

ID3D11Device* GraphicsClass::GetDevice()
{

	return m_d3d->GetDevice();

}

int GraphicsClass::GetScreenWidth()
{

	return m_screenWidth;

}

int GraphicsClass::GetScreenHeight()
{

	return m_screenHeight;

}
#include "D3DClass.h"

D3DClass::D3DClass()
{

	m_swapChain = 0;
	m_device = 0;
	m_deviceContext = 0;
	m_depthStencilBuffer = 0;
	m_depthStencilState = 0;
	m_depthStencilView = 0;
	m_disabledStencilState = 0;
	m_rasterState = 0;

}

D3DClass::D3DClass(const D3DClass&)
{
}

D3DClass::~D3DClass()
{
}

bool D3DClass::Initialize(int screenWidth, int screenHeight, bool vsync, HWND hwnd, bool fullScreen, float screenDepth, float screenNear)
{

	HRESULT result;
	IDXGIFactory* factory;
	IDXGIAdapter* adapter;
	IDXGIOutput* adapterOutput;
	unsigned int numModes, i, numerator, denominator, stringLength;
	DXGI_MODE_DESC* displayModeList;
	DXGI_ADAPTER_DESC adapterDesc;
	int error;
	DXGI_SWAP_CHAIN_DESC swapChainDesc;
	D3D_FEATURE_LEVEL featureLevel;
	ID3D11Texture2D* backBufferPtr;
	D3D11_TEXTURE2D_DESC depthBufferDesc;
	D3D11_DEPTH_STENCIL_DESC depthStencilDesc;
	D3D11_DEPTH_STENCIL_DESC depthDisabledStencilDesc;
	D3D11_DEPTH_STENCIL_VIEW_DESC depthStencilViewDesc;
	D3D11_RASTERIZER_DESC rasterDesc;
	D3D11_VIEWPORT viewport;
	float fieldOfView, screenAspect;

	m_vsyncEnabled = vsync;

	result = CreateDXGIFactory(__uuidof(IDXGIFactory), (void**)&factory);
	if(FAILED(result))
	{

		return false;

	}

	result = factory->EnumAdapters(0, &adapter);
	if(FAILED(result))
	{

		return false;

	}

	result = adapter->EnumOutputs(0, &adapterOutput);
	if(FAILED(result))
	{

		return false;

	}

	result = adapterOutput->GetDisplayModeList(DXGI_FORMAT_R8G8B8A8_UNORM, DXGI_ENUM_MODES_INTERLACED, &numModes, NULL);
	if(FAILED(result))
	{
		return false;
	}

	// Create a list to hold all the possible display modes for this monitor/video card combination.
	displayModeList = new DXGI_MODE_DESC[numModes];
	if(!displayModeList)
	{
		return false;
	}

	// Now fill the display mode list structures.
	result = adapterOutput->GetDisplayModeList(DXGI_FORMAT_R8G8B8A8_UNORM, DXGI_ENUM_MODES_INTERLACED, &numModes, displayModeList);
	if(FAILED(result))
	{
		return false;
	}

	// Now go through all the display modes and find the one that matches the screen width and height.
	// When a match is found store the numerator and denominator of the refresh rate for that monitor.
	for(i=0; i<numModes; i++)
	{
		if(displayModeList[i].Width == (unsigned int)screenWidth)
		{
			if(displayModeList[i].Height == (unsigned int)screenHeight)
			{
				numerator = displayModeList[i].RefreshRate.Numerator;
				denominator = displayModeList[i].RefreshRate.Denominator;
			}
		}
	}

	// Get the adapter (video card) description.
	result = adapter->GetDesc(&adapterDesc);
	if(FAILED(result))
	{
		return false;
	}

	// Store the dedicated video card memory in megabytes.
	m_videoCardMemory = (int)(adapterDesc.DedicatedVideoMemory / 1024 / 1024);

	// Convert the name of the video card to a character array and store it.
	error = wcstombs_s(&stringLength, m_videoCardDescription, 128, adapterDesc.Description, 128);
	if(error != 0)
	{
		return false;
	}

	// Release the display mode list.
	delete [] displayModeList;
	displayModeList = 0;

	// Release the adapter output.
	adapterOutput->Release();
	adapterOutput = 0;

	// Release the adapter.
	adapter->Release();
	adapter = 0;

	// Release the factory.
	factory->Release();
	factory = 0;

	// Initialize the swap chain description.
	ZeroMemory(&swapChainDesc, sizeof(swapChainDesc));

	// Set to a single back buffer.
	swapChainDesc.BufferCount = 1;

	// Set the width and height of the back buffer.
	swapChainDesc.BufferDesc.Width = screenWidth;
	swapChainDesc.BufferDesc.Height = screenHeight;

	// Set regular 32-bit surface for the back buffer.
	swapChainDesc.BufferDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM;

	// Set the refresh rate of the back buffer.
	if(m_vsyncEnabled)
	{
		swapChainDesc.BufferDesc.RefreshRate.Numerator = numerator;
		swapChainDesc.BufferDesc.RefreshRate.Denominator = denominator;
	}
	else
	{
		swapChainDesc.BufferDesc.RefreshRate.Numerator = 0;
		swapChainDesc.BufferDesc.RefreshRate.Denominator = 1;
	}

	// Set the usage of the back buffer.
	swapChainDesc.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT;

	// Set the handle for the window to render to.
	swapChainDesc.OutputWindow = hwnd;

	// Turn multisampling off.
	swapChainDesc.SampleDesc.Count = 1;
	swapChainDesc.SampleDesc.Quality = 0;

	// Set to full screen or windowed mode.
	if(fullScreen)
	{
		swapChainDesc.Windowed = false;
	}
	else
	{
		swapChainDesc.Windowed = true;
	}

	// Set the scan line ordering and scaling to unspecified.
	swapChainDesc.BufferDesc.ScanlineOrdering = DXGI_MODE_SCANLINE_ORDER_UNSPECIFIED;
	swapChainDesc.BufferDesc.Scaling = DXGI_MODE_SCALING_UNSPECIFIED;

	// Discard the back buffer contents after presenting.
	swapChainDesc.SwapEffect = DXGI_SWAP_EFFECT_DISCARD;

	// Don't set the advanced flags.
	swapChainDesc.Flags = 0;

	// Set the feature level to DirectX 11.
	featureLevel = D3D_FEATURE_LEVEL_11_0;

	// Create the swap chain, Direct3D device, and Direct3D device context.
	result = D3D11CreateDeviceAndSwapChain(NULL, D3D_DRIVER_TYPE_HARDWARE, NULL, 0, &featureLevel, 1, D3D11_SDK_VERSION, &swapChainDesc, &m_swapChain, &m_device, NULL, &m_deviceContext);
	if(FAILED(result))
	{
		return false;
	}

	// Get the pointer to the back buffer.
	result = m_swapChain->GetBuffer(0, __uuidof(ID3D11Texture2D), (LPVOID*)&backBufferPtr);
	if(FAILED(result))
	{
		return false;
	}

	// Create the render target view with the back buffer pointer.
	result = m_device->CreateRenderTargetView(backBufferPtr, NULL, &m_renderTargetView);
	if(FAILED(result))
	{
		return false;
	}

	// Release pointer to the back buffer as we no longer need it.
	backBufferPtr->Release();
	backBufferPtr = 0;

	// Initialize the description of the depth buffer.
	ZeroMemory(&depthBufferDesc, sizeof(depthBufferDesc));

	// Set up the description of the depth buffer.
	depthBufferDesc.Width = screenWidth;
	depthBufferDesc.Height = screenHeight;
	depthBufferDesc.MipLevels = 1;
	depthBufferDesc.ArraySize = 1;
	depthBufferDesc.Format = DXGI_FORMAT_D24_UNORM_S8_UINT;
	depthBufferDesc.SampleDesc.Count = 1;
	depthBufferDesc.SampleDesc.Quality = 0;
	depthBufferDesc.Usage = D3D11_USAGE_DEFAULT;
	depthBufferDesc.BindFlags = D3D11_BIND_DEPTH_STENCIL;
	depthBufferDesc.CPUAccessFlags = 0;
	depthBufferDesc.MiscFlags = 0;

	result = m_device->CreateTexture2D(&depthBufferDesc, NULL, &m_depthStencilBuffer);
	if(FAILED(result))
	{
		return false;
	}

	// Initialize the description of the stencil state.
	ZeroMemory(&depthStencilDesc, sizeof(depthStencilDesc));

	// Set up the description of the stencil state.
	depthStencilDesc.DepthEnable = true;
	depthStencilDesc.DepthWriteMask = D3D11_DEPTH_WRITE_MASK_ALL;
	depthStencilDesc.DepthFunc = D3D11_COMPARISON_LESS;

	depthStencilDesc.StencilEnable = true;
	depthStencilDesc.StencilReadMask = 0xFF;
	depthStencilDesc.StencilWriteMask = 0xFF;

	// Stencil operations if pixel is front-facing.
	depthStencilDesc.FrontFace.StencilFailOp = D3D11_STENCIL_OP_KEEP;
	depthStencilDesc.FrontFace.StencilDepthFailOp = D3D11_STENCIL_OP_INCR;
	depthStencilDesc.FrontFace.StencilPassOp = D3D11_STENCIL_OP_KEEP;
	depthStencilDesc.FrontFace.StencilFunc = D3D11_COMPARISON_ALWAYS;

	// Stencil operations if pixel is back-facing.
	depthStencilDesc.BackFace.StencilFailOp = D3D11_STENCIL_OP_KEEP;
	depthStencilDesc.BackFace.StencilDepthFailOp = D3D11_STENCIL_OP_DECR;
	depthStencilDesc.BackFace.StencilPassOp = D3D11_STENCIL_OP_KEEP;
	depthStencilDesc.BackFace.StencilFunc = D3D11_COMPARISON_ALWAYS;

	// Create the depth stencil state.
	result = m_device->CreateDepthStencilState(&depthStencilDesc, &m_depthStencilState);
	if(FAILED(result))
	{
		return false;
	}

	ZeroMemory(&depthDisabledStencilDesc, sizeof(depthDisabledStencilDesc));

	// Now create a second depth stencil state which turns off the Z buffer for 2D rendering.  The only difference is 
	// that DepthEnable is set to false, all other parameters are the same as the other depth stencil state.
	depthDisabledStencilDesc.DepthEnable = false;
	depthDisabledStencilDesc.DepthWriteMask = D3D11_DEPTH_WRITE_MASK_ALL;
	depthDisabledStencilDesc.DepthFunc = D3D11_COMPARISON_LESS;
	depthDisabledStencilDesc.StencilEnable = true;
	depthDisabledStencilDesc.StencilReadMask = 0xFF;
	depthDisabledStencilDesc.StencilWriteMask = 0xFF;
	depthDisabledStencilDesc.FrontFace.StencilFailOp = D3D11_STENCIL_OP_KEEP;
	depthDisabledStencilDesc.FrontFace.StencilDepthFailOp = D3D11_STENCIL_OP_INCR;
	depthDisabledStencilDesc.FrontFace.StencilPassOp = D3D11_STENCIL_OP_KEEP;
	depthDisabledStencilDesc.FrontFace.StencilFunc = D3D11_COMPARISON_ALWAYS;
	depthDisabledStencilDesc.BackFace.StencilFailOp = D3D11_STENCIL_OP_KEEP;
	depthDisabledStencilDesc.BackFace.StencilDepthFailOp = D3D11_STENCIL_OP_DECR;
	depthDisabledStencilDesc.BackFace.StencilPassOp = D3D11_STENCIL_OP_KEEP;
	depthDisabledStencilDesc.BackFace.StencilFunc = D3D11_COMPARISON_ALWAYS;

	result = m_device->CreateDepthStencilState(&depthDisabledStencilDesc, &m_disabledStencilState);
	if(FAILED(result))
	{

		return false;

	}

	// Set the depth stencil state.
	m_deviceContext->OMSetDepthStencilState(m_depthStencilState, 1);

	// Initailze the depth stencil view.
	ZeroMemory(&depthStencilViewDesc, sizeof(depthStencilViewDesc));

	// Set up the depth stencil view description.
	depthStencilViewDesc.Format = DXGI_FORMAT_D24_UNORM_S8_UINT;
	depthStencilViewDesc.ViewDimension = D3D11_DSV_DIMENSION_TEXTURE2D;
	depthStencilViewDesc.Texture2D.MipSlice = 0;

	// Create the depth stencil view.
	result = m_device->CreateDepthStencilView(m_depthStencilBuffer, &depthStencilViewDesc, &m_depthStencilView);
	if(FAILED(result))
	{
		return false;
	}

	// Bind the render target view and depth stencil buffer to the output render pipeline.
	m_deviceContext->OMSetRenderTargets(1, &m_renderTargetView, m_depthStencilView);

	// Setup the raster description which will determine how and what polygons will be drawn.
	rasterDesc.AntialiasedLineEnable = false;
	rasterDesc.CullMode = D3D11_CULL_BACK;
	rasterDesc.DepthBias = 0;
	rasterDesc.DepthBiasClamp = 0.0f;
	rasterDesc.DepthClipEnable = true;
	rasterDesc.FillMode = D3D11_FILL_SOLID;
	rasterDesc.FrontCounterClockwise = false;
	rasterDesc.MultisampleEnable = false;
	rasterDesc.ScissorEnable = false;
	rasterDesc.SlopeScaledDepthBias = 0.0f;

	// Create the rasterizer state from the description we just filled out.
	result = m_device->CreateRasterizerState(&rasterDesc, &m_rasterState);
	if(FAILED(result))
	{
		return false;
	}

	// Now set the rasterizer state.
	m_deviceContext->RSSetState(m_rasterState);

	// Setup the viewport for rendering.
	viewport.Width = (float)screenWidth;
	viewport.Height = (float)screenHeight;
	viewport.MinDepth = 0.0f;
	viewport.MaxDepth = 1.0f;
	viewport.TopLeftX = 0.0f;
	viewport.TopLeftY = 0.0f;

	// Create the viewport.
	m_deviceContext->RSSetViewports(1, &viewport);

	// Setup the projection matrix.
	fieldOfView = (float)D3DX_PI / 4.0f;
	screenAspect = (float)screenWidth / (float)screenHeight;

	// Create the projection matrix for 3D rendering.
	D3DXMatrixPerspectiveFovLH(&m_projectionMatrix, fieldOfView, screenAspect, screenNear, screenDepth);

	// Initialize the world matrix to the identity matrix.
	D3DXMatrixIdentity(&m_worldMatrix);

	// Create an orthographic projection matrix for 2D rendering.
	D3DXMatrixOrthoLH(&m_orthoMatrix, (float)screenWidth, (float)screenHeight, screenNear, screenDepth);

	return true;

}

void D3DClass::Shutdown()
{

	if(m_swapChain)
	{

		m_swapChain->SetFullscreenState(false, NULL);

	}

	if(m_rasterState)
	{

		m_rasterState->Release();
		m_rasterState = 0;

	}

	if(m_depthStencilView)
	{

		m_depthStencilView->Release();
		m_depthStencilView = 0;

	}

	if(m_depthStencilState)
	{

		m_depthStencilState->Release();
		m_depthStencilState = 0;

	}

	if(m_disabledStencilState)
	{

		m_disabledStencilState->Release();
		m_disabledStencilState = 0;

	}
	if(m_depthStencilBuffer)
	{

		m_depthStencilBuffer->Release();
		m_depthStencilBuffer = 0;

	}

	if(m_renderTargetView)
	{

		m_renderTargetView->Release();
		m_renderTargetView = 0;

	}

	if(m_deviceContext)
	{

		m_deviceContext->Release();
		m_deviceContext = 0;

	}

	if(m_device)
	{

		m_device->Release();
		m_device = 0;

	}

	if(m_swapChain)
	{

		m_swapChain->Release();
		m_swapChain = 0;

	}

	return;

}

void D3DClass::BeginScene(float R, float G, float B, float A)
{

	float color[4];

	color[0] = R;
	color[1] = G;
	color[2] = B;
	color[3] = A;

	m_deviceContext->ClearRenderTargetView(m_renderTargetView, color);

	m_deviceContext->ClearDepthStencilView(m_depthStencilView, D3D11_CLEAR_DEPTH, 1.0f, 0);

	return;

}

void D3DClass::EndScene()
{

	if(m_vsyncEnabled)
	{

		m_swapChain->Present(1, 0);

	}
	else
	{

		m_swapChain->Present(0, 0);

	}

	return;

}

ID3D11Device* D3DClass::GetDevice()
{

	return m_device;

}

ID3D11DeviceContext* D3DClass::GetDeviceContext()
{

	return m_deviceContext;

}

void D3DClass::GetProjectionMatrix(D3DXMATRIX& projectionMatrix)
{

	projectionMatrix = m_projectionMatrix;
	return;

}

void D3DClass::GetWorldMatrix(D3DXMATRIX& worldMatrix)
{

	worldMatrix = m_worldMatrix;
	return;

}

void D3DClass::GetOrthoMatrix(D3DXMATRIX& orthoMatrix)
{

	orthoMatrix = m_orthoMatrix;
	return;

}

void D3DClass::GetVideoCardInfo(char* cardName, int& memory)
{

	strcpy_s(cardName, 128, m_videoCardDescription);
	memory = m_videoCardMemory;
	return;

}

void D3DClass::TurnZBufferOff()
{

	m_deviceContext->OMSetDepthStencilState(m_disabledStencilState, 1);

	return;

}

void D3DClass::TurnZBufferOn()
{

	m_deviceContext->OMSetDepthStencilState(m_depthStencilState, 1);

	return;

}
#include "Texture2D.h"

Texture2D::Texture2D()
{

	m_vertexBuffer = 0;
	m_indexBuffer = 0;
	m_texture = 0;

}

Texture2D::Texture2D(const Texture2D&)
{
}

Texture2D::~Texture2D()
{
}

bool Texture2D::Initialize(ID3D11Device* device, int screenWidth, int screenHeight, WCHAR* texturefilename, int textureWidth, int textureHeight)
{

	bool result;

	m_screenWidth = screenWidth;
	m_screenheight = screenHeight;

	m_imageWidth = textureWidth;
	m_imageHeight = textureHeight;

	m_previousXPos = -1;
	m_previousYPos = -1;

	result = InitializeBuffers(device);
	if(!result)
	{

		return false;

	}

	result = LoadTexture(device, texturefilename);
	if(!result)
	{

		return false;

	}

	return true;

}

void Texture2D::Shutdown()
{

	ReleaseTexture();

	ShutdownBuffers();

	return;

}

bool Texture2D::Render(ID3D11DeviceContext* deviceContext, int positionX, int positionY)
{

	bool result;

	result = UpdateBuffers(deviceContext, positionX, positionY);
	if(!result)
	{

		return false;

	}

	RenderBuffers(deviceContext);

	return true;

}

int Texture2D::GetIndexCount()
{

	return m_indexCount;

}

ID3D11ShaderResourceView* Texture2D::GetTexture()
{

	return m_texture->GetTexture();

}

bool Texture2D::InitializeBuffers(ID3D11Device* device)
{

	Vertex* vertices;
	unsigned long* indices;
	D3D11_BUFFER_DESC vertexBufferDesc, indexBufferDesc;
	D3D11_SUBRESOURCE_DATA vertexData, indexData;
	HRESULT result;

	m_vertexCount = 6;
	m_indexCount = m_vertexCount;

	vertices = new Vertex[m_vertexCount];
	if(!vertices)
	{

		return false;

	}

	indices = new unsigned long[m_indexCount];
	if(!indices)
	{

		return false;

	}

	memset(vertices, 0, sizeof(Vertex) * m_vertexCount);

	for(int i = 0; i < m_indexCount; i++)
	{

		indices[i] = i;

	}

	vertexBufferDesc.Usage = D3D11_USAGE_DYNAMIC;
	vertexBufferDesc.ByteWidth = sizeof(Vertex) * m_vertexCount;
	vertexBufferDesc.BindFlags = D3D11_BIND_VERTEX_BUFFER;
	vertexBufferDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
	vertexBufferDesc.MiscFlags = 0;
	vertexBufferDesc.StructureByteStride = 0;

	vertexData.pSysMem = vertices;
	vertexData.SysMemPitch = 0;
	vertexData.SysMemSlicePitch = 0;

	result = device->CreateBuffer(&vertexBufferDesc, &vertexData, &m_vertexBuffer);
	if(FAILED(result))
	{

		return false;

	}

	indexBufferDesc.Usage = D3D11_USAGE_DEFAULT;
	indexBufferDesc.ByteWidth = sizeof(unsigned long) * m_indexCount;
	indexBufferDesc.BindFlags = D3D11_BIND_INDEX_BUFFER;
	indexBufferDesc.CPUAccessFlags = 0;
	indexBufferDesc.MiscFlags = 0;
	indexBufferDesc.StructureByteStride = 0;

	indexData.pSysMem = indices;
	indexData.SysMemPitch = 0;
	indexData.SysMemSlicePitch = 0;

	result = device->CreateBuffer(&indexBufferDesc, &indexData, &m_indexBuffer);
	if(FAILED(result))
	{

		return false;

	}

	delete[] vertices;
	vertices = 0;

	delete[] indices;
	indices = 0;

	return true;

}

void Texture2D::ShutdownBuffers()
{

	if(m_vertexBuffer)
	{

		m_vertexBuffer->Release();
		m_vertexBuffer = 0;

	}

	if(m_indexBuffer)
	{

		m_indexBuffer->Release();
		m_indexBuffer = 0;

	}

	return;

}

bool Texture2D::UpdateBuffers(ID3D11DeviceContext* deviceContext, int XPosition, int YPosition)
{

	float left, right, top, bottom;
	Vertex* vertices;
	D3D11_MAPPED_SUBRESOURCE mappedResource;
	Vertex* verticesPtr;
	HRESULT result;

	if(XPosition == m_previousXPos && YPosition == m_previousYPos)
	{

		return true;

	}

	m_previousXPos = XPosition;
	m_previousYPos = YPosition;

	left = (float)((m_screenWidth / 2) * -1) + (float)XPosition;
	right = left + m_imageWidth;

	top = (float)((m_screenheight / 2)) - (float)YPosition;
	bottom = top - (float)m_imageHeight;

	vertices = new Vertex[m_vertexCount];
	if(!vertices)
	{

		return false;

	}

	vertices[0].position = D3DXVECTOR3(left, top, 0.0f);
	vertices[0].texture = D3DXVECTOR2(0.0f, 0.0f);

	vertices[1].position = D3DXVECTOR3(right, bottom, 0.0f);
	vertices[1].texture = D3DXVECTOR2(1.0f, 1.0f);

	vertices[2].position = D3DXVECTOR3(left, bottom, 0.0f);
	vertices[2].texture = D3DXVECTOR2(0.0f, 1.0f);

	vertices[3].position = D3DXVECTOR3(left, top, 0.0f);
	vertices[3].texture = D3DXVECTOR2(0.0f, 0.0f);

	vertices[4].position = D3DXVECTOR3(right, top, 0.0f);
	vertices[4].texture = D3DXVECTOR2(1.0f, 0.0f);

	vertices[5].position = D3DXVECTOR3(right, bottom, 0.0f);
	vertices[5].texture = D3DXVECTOR2(1.0f, 1.0f);

	result = deviceContext->Map(m_vertexBuffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &mappedResource);
	if(FAILED(result))
	{

		return false;

	}

	verticesPtr = (Vertex*)mappedResource.pData;

	memcpy(verticesPtr, (void*)vertices, (sizeof(Vertex) * m_vertexCount));

	deviceContext->Unmap(m_vertexBuffer, 0);

	delete [] vertices;
	vertices = 0;

	return true;

}

void Texture2D::RenderBuffers(ID3D11DeviceContext* deviceContext)
{

	unsigned int stride;
	unsigned int offset;

	stride = sizeof(Vertex);
	offset = 0;

	deviceContext->IASetVertexBuffers(0, 1, &m_vertexBuffer, &stride, &offset);

	deviceContext->IASetIndexBuffer(m_indexBuffer, DXGI_FORMAT_R32_UINT, 0);

	deviceContext->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST);

	return;

}

bool Texture2D::LoadTexture(ID3D11Device* device, WCHAR* filename)
{

	bool result;

	m_texture = new Texture();
	if(!m_texture)
	{

		return false;

	}

	result = m_texture->Initialize(device, filename);
	if(!result)
	{

		return false;

	}


	return true;

}

void Texture2D::ReleaseTexture()
{

	if(m_texture)
	{
		
		m_texture->Shutdown();
		delete m_texture;
		m_texture = 0;

	}

	return;

}

 

Share this post


Link to post
Share on other sites

Sounds like you are multiplying those vertices with the transformation matrices in your vertex shader. You should create and use a separate vertex shader (which simply omits that multiplication) for those polygons.

Share this post


Link to post
Share on other sites

I think Deortuka is on the right track here.  If what you want is the 2D image to appear in what is the equivalent of the near clipping plane (i.e. parallel to the clipping plane) then you have to ensure that all of your vertex depths end up the same in clip space.  So if you are applying a transformation/projection to those vertices, that will affect the clipspace z values, and make them appear like they are a 3D model.

 

On the other hand, if you write a customized vertex shader that always sets z = 0 and w = 1, then the x and y  coordinates can range from [-1,1] and that will simply position the texture within the screen with a flat alignment.

Share this post


Link to post
Share on other sites

Thank you for the help. I was previously using this vertex shader:

 

PixelInputType main(VertexInputType input)
{

	PixelInputType output;

	input.position.w = 1.0f;

	output.position = mul(input.position, worldMatrix);
	output.position = mul(output.position, viewMatrix);
	output.position = mul(output.position, projectionMatrix);

	output.tex = input.tex;

	return output;

}

 

I followed your advice and removed the multiplication by the world and view matrices. I now use this shader:

 

PixelInputType main(VertexInputType input)
{

	PixelInputType output;

	input.position.w = 1.0f;

	output.position = mul(input.position, projectionMatrix);

	output.position.z = 0.0f;

	output.tex = input.tex;

	return output;

}

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

Sign in to follow this  

  • Forum Statistics

    • Total Topics
      628275
    • Total Posts
      2981763
  • Similar Content

    • By mellinoe
      Hi all,
      First time poster here, although I've been reading posts here for quite a while. This place has been invaluable for learning graphics programming -- thanks for a great resource!
      Right now, I'm working on a graphics abstraction layer for .NET which supports D3D11, Vulkan, and OpenGL at the moment. I have implemented most of my planned features already, and things are working well. Some remaining features that I am planning are Compute Shaders, and some flavor of read-write shader resources. At the moment, my shaders can just get simple read-only access to a uniform (or constant) buffer, a texture, or a sampler. Unfortunately, I'm having a tough time grasping the distinctions between all of the different kinds of read-write resources that are available. In D3D alone, there seem to be 5 or 6 different kinds of resources with similar but different characteristics. On top of that, I get the impression that some of them are more or less "obsoleted" by the newer kinds, and don't have much of a place in modern code. There seem to be a few pivots:
      The data source/destination (buffer or texture) Read-write or read-only Structured or unstructured (?) Ordered vs unordered (?) These are just my observations based on a lot of MSDN and OpenGL doc reading. For my library, I'm not interested in exposing every possibility to the user -- just trying to find a good "middle-ground" that can be represented cleanly across API's which is good enough for common scenarios.
      Can anyone give a sort of "overview" of the different options, and perhaps compare/contrast the concepts between Direct3D, OpenGL, and Vulkan? I'd also be very interested in hearing how other folks have abstracted these concepts in their libraries.
    • By turanszkij
      If I do a buffer update with MAP_NO_OVERWRITE or MAP_DISCARD, can I just write to the buffer after I called Unmap() on the buffer? It seems to work fine for me (Nvidia driver), but is it actually legal to do so? I have a graphics device wrapper and I don't want to expose Map/Unmap, but just have a function like void* AllocateFromRingBuffer(GPUBuffer* buffer, uint size, uint& offset); This function would just call Map on the buffer, then Unmap immediately and then return the address of the buffer. It usually does a MAP_NO_OVERWRITE, but sometimes it is a WRITE_DISCARD (when the buffer wraps around). Previously I have been using it so that the function expected the data upfront and would copy to the buffer between Map/Unmap, but now I want to extend functionality of it so that it would just return an address to write to.
    • By mister345
      Trying to write a multitexturing shader in DirectX11 - 3 textures work fine, but adding 4th gets sampled as black!
      Could you please look at the textureClass.cpp line 79? - I'm guess its D3D11_TEXTURE2D_DESC settings are wrong, 
      but no idea how to set it up right. I tried changing ArraySize from 1 to 4, but does nothing. If thats not the issue, please look
      at the LightShader_ps - maybe doing something wrong there? Otherwise, no idea.
          // Setup the description of the texture.
          textureDesc.Height = height;
          textureDesc.Width = width;
          textureDesc.MipLevels = 0;
          textureDesc.ArraySize = 1;
          textureDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM;
          textureDesc.SampleDesc.Count = 1;
          textureDesc.SampleDesc.Quality = 0;
          textureDesc.Usage = D3D11_USAGE_DEFAULT;
          textureDesc.BindFlags = D3D11_BIND_SHADER_RESOURCE | D3D11_BIND_RENDER_TARGET;
          textureDesc.CPUAccessFlags = 0;
          textureDesc.MiscFlags = D3D11_RESOURCE_MISC_GENERATE_MIPS;
      Please help, thanks.
      https://github.com/mister51213/DirectX11Engine/blob/master/DirectX11Engine/Texture.cpp
       
    • By GameDevCoder
      I have to learn DirectX for a course I am studying. This book https://www.amazon.co.uk/Introduction-3D-Game-Programming-Directx/dp/1936420228 I felt would be great for me to learn from.
      The trouble is the examples which are all offered here http://www.d3dcoder.net/d3d11.htm . They do not work for me. This is a known issue as there is a link on the examples page saying how to fix it. I'm having difficulty with doing this though. This is the page with the solution http://www.d3dcoder.net/Data/Book4/d3d11Win10.htm.
      The reason why this problem is happening, the book was released before Windows 10 was released. Now when the examples are run they need slight fixes in order for them to even work. I just can't get these examples working at all.
      Would anyone be able to help me get the examples working please. I am running Windows 10 also just to make this clear, so this is why the examples are experiencing the not so desired behaviour. I just wish they would work straight away but there seems to be issues with the examples from this book mainly because of it trying to run from a Windows 10 OS.
      On top of this, if anyone has any suggestions with how I can learn DirectX 11 i would be most grateful. Thanks very much. I really would like to get them examples working to though from the book I mentioned.
      Look forward to reading any replies this thread receives.
       
      GameDevCoder.


      PS - If anyone has noticed. I asked this about 1 year ago also but this was when I was dabbling in it. Now I am actually needing to produce some stuff with DirectX so I have to get my head round this now. I felt at the time that I sort of understood what was being written to me in response to my thread back then. I had always been a little unsure though of being absolutely sure of what was happening with these troublesome examples. So I am really just trying to get to the bottom of this now. If anyone can help me work these examples out so I can see them working then hopefully I can learn DirectX 11 from them.
       
      *SOLUTION* - I was able to get the examples running thanks to the gamedev.net community. Great work guys. I'm so please now that I can learn from this book now I have the examples running.
      https://www.gamedev.net/forums/topic/693437-i-need-to-learn-directx-the-examples-for-introduction-to-3d-programming-with-directx-11-by-frank-d-luna-does-not-work-can-anyone-help-me/?do=findComment&comment=5363013
    • By DiligentDev
      Hello!
      I would like to introduce Diligent Engine, a project that I've been recently working on. Diligent Engine is a light-weight cross-platform abstraction layer between the application and the platform-specific graphics API. Its main goal is to take advantages of the next-generation APIs such as Direct3D12 and Vulkan, but at the same time provide support for older platforms via Direct3D11, OpenGL and OpenGLES. Diligent Engine exposes common front-end for all supported platforms and provides interoperability with underlying native API. It also supports integration with Unity and is designed to be used as a graphics subsystem in a standalone game engine, Unity native plugin or any other 3D application. It is distributed under Apache 2.0 license and is free to use. Full source code is available for download on GitHub. The engine contains shader source code converter that allows shaders authored in HLSL to be translated to GLSL.
      The engine currently supports Direct3D11, Direct3D12, and OpenGL/GLES on Win32, Universal Windows and Android platforms.
      API Basics
      Initialization
      The engine can perform initialization of the API or attach to already existing D3D11/D3D12 device or OpenGL/GLES context. For instance, the following code shows how the engine can be initialized in D3D12 mode:
      #include "RenderDeviceFactoryD3D12.h" using namespace Diligent; // ...  GetEngineFactoryD3D12Type GetEngineFactoryD3D12 = nullptr; // Load the dll and import GetEngineFactoryD3D12() function LoadGraphicsEngineD3D12(GetEngineFactoryD3D12); auto *pFactoryD3D11 = GetEngineFactoryD3D12(); EngineD3D12Attribs EngD3D12Attribs; EngD3D12Attribs.CPUDescriptorHeapAllocationSize[0] = 1024; EngD3D12Attribs.CPUDescriptorHeapAllocationSize[1] = 32; EngD3D12Attribs.CPUDescriptorHeapAllocationSize[2] = 16; EngD3D12Attribs.CPUDescriptorHeapAllocationSize[3] = 16; EngD3D12Attribs.NumCommandsToFlushCmdList = 64; RefCntAutoPtr<IRenderDevice> pRenderDevice; RefCntAutoPtr<IDeviceContext> pImmediateContext; SwapChainDesc SwapChainDesc; RefCntAutoPtr<ISwapChain> pSwapChain; pFactoryD3D11->CreateDeviceAndContextsD3D12( EngD3D12Attribs, &pRenderDevice, &pImmediateContext, 0 ); pFactoryD3D11->CreateSwapChainD3D12( pRenderDevice, pImmediateContext, SwapChainDesc, hWnd, &pSwapChain ); Creating Resources
      Device resources are created by the render device. The two main resource types are buffers, which represent linear memory, and textures, which use memory layouts optimized for fast filtering. To create a buffer, you need to populate BufferDesc structure and call IRenderDevice::CreateBuffer(). The following code creates a uniform (constant) buffer:
      BufferDesc BuffDesc; BufferDesc.Name = "Uniform buffer"; BuffDesc.BindFlags = BIND_UNIFORM_BUFFER; BuffDesc.Usage = USAGE_DYNAMIC; BuffDesc.uiSizeInBytes = sizeof(ShaderConstants); BuffDesc.CPUAccessFlags = CPU_ACCESS_WRITE; m_pDevice->CreateBuffer( BuffDesc, BufferData(), &m_pConstantBuffer ); Similar, to create a texture, populate TextureDesc structure and call IRenderDevice::CreateTexture() as in the following example:
      TextureDesc TexDesc; TexDesc.Name = "My texture 2D"; TexDesc.Type = TEXTURE_TYPE_2D; TexDesc.Width = 1024; TexDesc.Height = 1024; TexDesc.Format = TEX_FORMAT_RGBA8_UNORM; TexDesc.Usage = USAGE_DEFAULT; TexDesc.BindFlags = BIND_SHADER_RESOURCE | BIND_RENDER_TARGET | BIND_UNORDERED_ACCESS; TexDesc.Name = "Sample 2D Texture"; m_pRenderDevice->CreateTexture( TexDesc, TextureData(), &m_pTestTex ); Initializing Pipeline State
      Diligent Engine follows Direct3D12 style to configure the graphics/compute pipeline. One big Pipelines State Object (PSO) encompasses all required states (all shader stages, input layout description, depth stencil, rasterizer and blend state descriptions etc.)
      Creating Shaders
      To create a shader, populate ShaderCreationAttribs structure. An important member is ShaderCreationAttribs::SourceLanguage. The following are valid values for this member:
      SHADER_SOURCE_LANGUAGE_DEFAULT  - The shader source format matches the underlying graphics API: HLSL for D3D11 or D3D12 mode, and GLSL for OpenGL and OpenGLES modes. SHADER_SOURCE_LANGUAGE_HLSL  - The shader source is in HLSL. For OpenGL and OpenGLES modes, the source code will be converted to GLSL. See shader converter for details. SHADER_SOURCE_LANGUAGE_GLSL  - The shader source is in GLSL. There is currently no GLSL to HLSL converter. To allow grouping of resources based on the frequency of expected change, Diligent Engine introduces classification of shader variables:
      Static variables (SHADER_VARIABLE_TYPE_STATIC) are variables that are expected to be set only once. They may not be changed once a resource is bound to the variable. Such variables are intended to hold global constants such as camera attributes or global light attributes constant buffers. Mutable variables (SHADER_VARIABLE_TYPE_MUTABLE) define resources that are expected to change on a per-material frequency. Examples may include diffuse textures, normal maps etc. Dynamic variables (SHADER_VARIABLE_TYPE_DYNAMIC) are expected to change frequently and randomly. This post describes the resource binding model in Diligent Engine.
      The following is an example of shader initialization:
      ShaderCreationAttribs Attrs; Attrs.Desc.Name = "MyPixelShader"; Attrs.FilePath = "MyShaderFile.fx"; Attrs.SearchDirectories = "shaders;shaders\\inc;"; Attrs.EntryPoint = "MyPixelShader"; Attrs.Desc.ShaderType = SHADER_TYPE_PIXEL; Attrs.SourceLanguage = SHADER_SOURCE_LANGUAGE_HLSL; BasicShaderSourceStreamFactory BasicSSSFactory(Attrs.SearchDirectories); Attrs.pShaderSourceStreamFactory = &BasicSSSFactory; ShaderVariableDesc ShaderVars[] =  {     {"g_StaticTexture", SHADER_VARIABLE_TYPE_STATIC},     {"g_MutableTexture", SHADER_VARIABLE_TYPE_MUTABLE},     {"g_DynamicTexture", SHADER_VARIABLE_TYPE_DYNAMIC} }; Attrs.Desc.VariableDesc = ShaderVars; Attrs.Desc.NumVariables = _countof(ShaderVars); Attrs.Desc.DefaultVariableType = SHADER_VARIABLE_TYPE_STATIC; StaticSamplerDesc StaticSampler; StaticSampler.Desc.MinFilter = FILTER_TYPE_LINEAR; StaticSampler.Desc.MagFilter = FILTER_TYPE_LINEAR; StaticSampler.Desc.MipFilter = FILTER_TYPE_LINEAR; StaticSampler.TextureName = "g_MutableTexture"; Attrs.Desc.NumStaticSamplers = 1; Attrs.Desc.StaticSamplers = &StaticSampler; ShaderMacroHelper Macros; Macros.AddShaderMacro("USE_SHADOWS", 1); Macros.AddShaderMacro("NUM_SHADOW_SAMPLES", 4); Macros.Finalize(); Attrs.Macros = Macros; RefCntAutoPtr<IShader> pShader; m_pDevice->CreateShader( Attrs, &pShader ); Creating the Pipeline State Object
      To create a pipeline state object, define instance of PipelineStateDesc structure. The structure defines the pipeline specifics such as if the pipeline is a compute pipeline, number and format of render targets as well as depth-stencil format:
      // This is a graphics pipeline PSODesc.IsComputePipeline = false; PSODesc.GraphicsPipeline.NumRenderTargets = 1; PSODesc.GraphicsPipeline.RTVFormats[0] = TEX_FORMAT_RGBA8_UNORM_SRGB; PSODesc.GraphicsPipeline.DSVFormat = TEX_FORMAT_D32_FLOAT; The structure also defines depth-stencil, rasterizer, blend state, input layout and other parameters. For instance, rasterizer state can be defined as in the code snippet below:
      // Init rasterizer state RasterizerStateDesc &RasterizerDesc = PSODesc.GraphicsPipeline.RasterizerDesc; RasterizerDesc.FillMode = FILL_MODE_SOLID; RasterizerDesc.CullMode = CULL_MODE_NONE; RasterizerDesc.FrontCounterClockwise = True; RasterizerDesc.ScissorEnable = True; //RSDesc.MultisampleEnable = false; // do not allow msaa (fonts would be degraded) RasterizerDesc.AntialiasedLineEnable = False; When all fields are populated, call IRenderDevice::CreatePipelineState() to create the PSO:
      m_pDev->CreatePipelineState(PSODesc, &m_pPSO); Binding Shader Resources
      Shader resource binding in Diligent Engine is based on grouping variables in 3 different groups (static, mutable and dynamic). Static variables are variables that are expected to be set only once. They may not be changed once a resource is bound to the variable. Such variables are intended to hold global constants such as camera attributes or global light attributes constant buffers. They are bound directly to the shader object:
       
      PixelShader->GetShaderVariable( "g_tex2DShadowMap" )->Set( pShadowMapSRV ); Mutable and dynamic variables are bound via a new object called Shader Resource Binding (SRB), which is created by the pipeline state:
      m_pPSO->CreateShaderResourceBinding(&m_pSRB); Dynamic and mutable resources are then bound through SRB object:
      m_pSRB->GetVariable(SHADER_TYPE_VERTEX, "tex2DDiffuse")->Set(pDiffuseTexSRV); m_pSRB->GetVariable(SHADER_TYPE_VERTEX, "cbRandomAttribs")->Set(pRandomAttrsCB); The difference between mutable and dynamic resources is that mutable ones can only be set once for every instance of a shader resource binding. Dynamic resources can be set multiple times. It is important to properly set the variable type as this may affect performance. Static variables are generally most efficient, followed by mutable. Dynamic variables are most expensive from performance point of view. This post explains shader resource binding in more details.
      Setting the Pipeline State and Invoking Draw Command
      Before any draw command can be invoked, all required vertex and index buffers as well as the pipeline state should be bound to the device context:
      // Clear render target const float zero[4] = {0, 0, 0, 0}; m_pContext->ClearRenderTarget(nullptr, zero); // Set vertex and index buffers IBuffer *buffer[] = {m_pVertexBuffer}; Uint32 offsets[] = {0}; Uint32 strides[] = {sizeof(MyVertex)}; m_pContext->SetVertexBuffers(0, 1, buffer, strides, offsets, SET_VERTEX_BUFFERS_FLAG_RESET); m_pContext->SetIndexBuffer(m_pIndexBuffer, 0); m_pContext->SetPipelineState(m_pPSO); Also, all shader resources must be committed to the device context:
      m_pContext->CommitShaderResources(m_pSRB, COMMIT_SHADER_RESOURCES_FLAG_TRANSITION_RESOURCES); When all required states and resources are bound, IDeviceContext::Draw() can be used to execute draw command or IDeviceContext::DispatchCompute() can be used to execute compute command. Note that for a draw command, graphics pipeline must be bound, and for dispatch command, compute pipeline must be bound. Draw() takes DrawAttribs structure as an argument. The structure members define all attributes required to perform the command (primitive topology, number of vertices or indices, if draw call is indexed or not, if draw call is instanced or not, if draw call is indirect or not, etc.). For example:
      DrawAttribs attrs; attrs.IsIndexed = true; attrs.IndexType = VT_UINT16; attrs.NumIndices = 36; attrs.Topology = PRIMITIVE_TOPOLOGY_TRIANGLE_LIST; pContext->Draw(attrs); Build Instructions
      Please visit this page for detailed build instructions.
      Samples
      The engine contains two graphics samples that demonstrate how the API can be used.
      AntTweakBar sample demonstrates how to use AntTweakBar library to create simple user interface. It can also be thought of as Diligent Engine’s “Hello World” example.

       
      Atmospheric scattering sample is a more advanced one. It demonstrates how Diligent Engine can be used to implement various rendering tasks: loading textures from files, using complex shaders, rendering to textures, using compute shaders and unordered access views, etc. 

       
      The engine also includes Asteroids performance benchmark based on this demo developed by Intel. It renders 50,000 unique textured asteroids and lets compare performance of D3D11 and D3D12 implementations. Every asteroid is a combination of one of 1000 unique meshes and one of 10 unique textures. 

      Integration with Unity
      Diligent Engine supports integration with Unity through Unity low-level native plugin interface. The engine relies on Native API Interoperability to attach to the graphics API initialized by Unity. After Diligent Engine device and context are created, they can be used us usual to create resources and issue rendering commands. GhostCubePlugin shows an example how Diligent Engine can be used to render a ghost cube only visible as a reflection in a mirror.

       
  • Popular Now