Jump to content
• Advertisement

# Simple question concering rotation.

This topic is 1870 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

If you intended to correct an error in the post then please contact us.

## Recommended Posts

Hello fellows of gamedev.net. I've been struggling with a bit of a problem on my AI.

Me and a friend are working on a space game. Our use-case is a basic kind of AI that will stop and turn to the player when the player comes near.
The problem as follows:

How do I find the (target) angular velocity that will rotate a ship towards a given point?

The knee-jerk solution would be to create a look-at rotation matrix, but this isn't an option. The ship must be rotated indirectly by changing it's target velocity.

I have looked in the book "Artificial Intelligence for Games, Second Edition", from page 180 and on, however this example use quaternions, not matrices like we do.

I guess the basic idea would be to align the ships z-axis with the vector between the two ships, however I don't know how to achieve this( my math skills are lacking )

thanks in advance!

Edited by Doublefris

#### Share this post

##### Share on other sites
Advertisement
This should probably be moved to "Math & Physiscs".

Why don't you use quaternions for this computation? It's much easier to do that way.

#### Share this post

##### Share on other sites

I wrote this function for an aimbot project for a popular online game over a decade ago:

void VecToAngles( const float *forward, float *angles )
{
float	tmp, yaw, pitch;

if (forward[1] == 0 && forward[0] == 0)
{
yaw = 0;
if (forward[2] > 0)
pitch = 90;
else
pitch = 270;
}
else
{
yaw = (atan2(forward[1], forward[0]) * 180 / 3.14159);

if (yaw < 0)
yaw += 360;

tmp = sqrt (forward[0]*forward[0] + forward[1]*forward[1]);

pitch = (atan2(forward[2], tmp) * 180 / 3.14159);
}

angles[0] = pitch;
angles[1] = yaw;
angles[2] = 0;
}



The rest is history.

#### Share this post

##### Share on other sites

This should probably be moved to "Math & Physiscs".

Why don't you use quaternions for this computation? It's much easier to do that way.

The main reason is our code base doen't have support for quaternions as of now. Furthermore I have never used quaternions before and therefore am not really comfortable with them. Anyway, do you really think the only suitable solution would be quaternions?

#### Share this post

##### Share on other sites

The main reason is our code base doen't have support for quaternions as of now. Furthermore I have never used quaternions before and therefore am not really comfortable with them. Anyway, do you really think the only suitable solution would be quaternions?

No, I don't think it's the only solution, but it's probably the easiest. If you stick to representing attitudes as matrices, figuring out the most natural transition between two attitudes involves some heavy math.

#### Share this post

##### Share on other sites

How do I find the (target) angular velocity that will rotate a ship towards a given point?

You can calculate the target angular velocity vector by taking the cross product of the current direction and the desired direction, and scaling according to the desired rotation speed.  That leaves the question of the ship's roll when it reaches the destination, though - if you care about that, this problem becomes more complicated.

#### Share this post

##### Share on other sites

How do I find the (target) angular velocity that will rotate a ship towards a given point?

You can calculate the target angular velocity vector by taking the cross product of the current direction and the desired direction, and scaling according to the desired rotation speed.  That leaves the question of the ship's roll when it reaches the destination, though - if you care about that, this problem becomes more complicated.

this is a very nice solution seems to be working well so far. As for the roll, I think it's fine to have spaceship gravitate towards an 'up' vector, or I'll just figure something out :)

Edited by Doublefris

#### Share this post

##### Share on other sites

The main reason is our code base doen't have support for quaternions as of now. Furthermore I have never used quaternions before and therefore am not really comfortable with them. Anyway, do you really think the only suitable solution would be quaternions?

No, I don't think it's the only solution, but it's probably the easiest. If you stick to representing attitudes as matrices, figuring out the most natural transition between two attitudes involves some heavy math.

Say, if we were to implement quatornions, what would be the basic steps used to get an angular velocity? Find the angular displacement vector that is the lowest?

#### Share this post

##### Share on other sites

Say, if we were to implement quatornions, what would be the basic steps used to get an angular velocity? Find the angular displacement vector that is the lowest?

You would take the logarithm of the ratio of the target attitude and the current attitude. This is a quaternion whose real part is 0; the other three components give you the angular velocity that, when applied for 1 second, will convert the current attitude into the target attitude.
#include <iostream>
#include <boost/math/quaternion.hpp>

typedef boost::math::quaternion<double> Q;

int main() {
Q a(0.0, 1.0, 0.0, 0.0);
Q b(0.0, 0.0, 1.0, 0.0);

Q ratio = b / a;
double scale = std::acos(ratio.R_component_1());
Q log_of_ratio(0.0,
scale * ratio.R_component_2(),
scale * ratio.R_component_3(),
scale * ratio.R_component_4());

std::cout << log_of_ratio << '\n';
}


Edited by Álvaro

#### Share this post

##### Share on other sites

EDIT: actually nvm it, something else about my code was faulty ^^

Edited by Doublefris

#### Share this post

##### Share on other sites

• Advertisement

### Announcements

• Advertisement

• ### Popular Now

• 10
• 17
• 9
• 13
• 41
• Advertisement
• Advertisement
×

## Important Information

By using GameDev.net, you agree to our community Guidelines, Terms of Use, and Privacy Policy.

Participate in the game development conversation and more when you create an account on GameDev.net!

Sign me up!