Jump to content
  • Advertisement
Sign in to follow this  
Xeeynamo

OpenGL Abstraction layer between Direct3D9 and OpenGL 2.1

This topic is 1873 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

If you intended to correct an error in the post then please contact us.

Recommended Posts

Hi, I'm currently working on an abstraction layer between Direct3D9 and OpenGL 2.1.

Basically there is a virtual class (the rendering interface) that can be implemented with D3D9 or GL21 class. The problem that I have is that I don't know how to store and send the vertices. D3D9 provides FVF where every vertices contains position, texture uv and color in a DWORD value. OpenGL handles the single vertices' elements in different locations of memory (an array for position, an array for texture uv and an array for color in vec4 float format). Basically I want an independent way to create vertices, the application should store them in a portion of memory, then send them all at once to the render interface, but how? I know that OpenGL can handle the vertices in D3D compatibility mode (with glVertexAttribPointer, managing stride and pointer value) that seems to be slower than the native way, but how to manage for example the colors? D3D9 accepts a single 32-bit value in integer format, OpenGL manages it in a more dynamic (but heavy) way, storing each color's channel in a 32-bit floating point value. In this case I can handle the 32-bit integer value inside the vertex shader and then convert it in a vec4 right? But all these operations seems to be too heavy. In the future I want that this abstraction layer is good enough to implement other rendering engines like Direct3D11, OpenGL ES 2.0 and others. So my main question is: there is a nice way to abstract these two rendering API without to change the rest of the code that uses the rendering interface? 

Share this post


Link to post
Share on other sites
Advertisement
I'd recommend not supporting fixed-function pipeline at all, and instead requiring pixel and vertex shaders.
In D3D9, this means that you'd be using vertex declarations instead of FVFs.
Both D3D and GL allow you to store arrays of individual attributes or strided structures of attributes. The optimal memory layout depends on the GPU.
I've not heard of 'D3D compatability mode' in GL...
Both APIs let you have 4-byte vertex attributes (e.g. For colors).

Share this post


Link to post
Share on other sites

How are you creating your vertices anyway? I would create an API independand vertex layout that fits your needs, and have the actual rendering implementation translate this into the correct vertex layout for each API. I don't know if this is the optimal way, but at least it will cause the least problems since the actual GPU vertices are quaranted to fit the current APIs needs. Creating could take a bit longer, but that all depends on how intelligent you implement the translation of your generic vertex format to the API specific. Pseudocode might go like this.

 

modelFile = LoadFile("Model.myext");

GenericVertexFmt vertices[modelFile.numVertices];

for(each vertex in model)
{
vertices = vertex; //optimal if your file format is API independant, too
}

renderClass.createVertexObject(vertices); //creates a vertex object for the current implemented API

Thats at least how I'd do that, again there might be a better approach, I havn't done this myself but it appears to be a good possibility.

Share this post


Link to post
Share on other sites

I'd recommend not supporting fixed-function pipeline at all, and instead requiring pixel and vertex shaders.
In D3D9, this means that you'd be using vertex declarations instead of FVFs.
Both D3D and GL allow you to store arrays of individual attributes or strided structures of attributes. The optimal memory layout depends on the GPU.
I've not heard of 'D3D compatability mode' in GL...
Both APIs let you have 4-byte vertex attributes (e.g. For colors).

Yes, I found the vertex declaration more flexible than FVF. How D3D supports individual attributes? And how I can say if the GPU prefeer packed or individual vertices attributes? Seems that OpenGL manages better in a way, Direct3D9 in another way. I found the D3D9 compatibility mode here

 


How are you creating your vertices anyway? I would create an API independand vertex layout that fits your needs, and have the actual rendering implementation translate this into the correct vertex layout for each API. I don't know if this is the optimal way, but at least it will cause the least problems since the actual GPU vertices are quaranted to fit the current APIs needs. Creating could take a bit longer, but that all depends on how intelligent you implement the translation of your generic vertex format to the API specific. Pseudocode might go like this.

 

modelFile = LoadFile("Model.myext");

GenericVertexFmt vertices[modelFile.numVertices];

for(each vertex in model)
{
vertices = vertex; //optimal if your file format is API independant, too
}

renderClass.createVertexObject(vertices); //creates a vertex object for the current implemented API

Thats at least how I'd do that, again there might be a better approach, I havn't done this myself but it appears to be a good possibility.

This can be a solution obviously, but can be overweight as works in cases of a lot of vertices. Currently I'm creating a lot of vertices at runtime that handles sprites with XYZ coords, UV coords, colors and a value that points to the palette index (the value is processed by the fragment shader).

Share this post


Link to post
Share on other sites

This can be a solution obviously, but can be overweight as works in cases of a lot of vertices. Currently I'm creating a lot of vertices at runtime that handles sprites with XYZ coords, UV coords, colors and a value that points to the palette index (the value is processed by the fragment shader).

 

If I understood Hodgman correctly, there is no big difference in the actual layout of the vertices for both APIs. Using your own format would just assure you can plug in any API you want, while you might need to create a format struct that is aligned to certain bytes (just assuming, not really my stuff here, sorry) it would be a simple memcpy (or similar) operation, which shouldn't be too costy, as far as I can say. Granted that you already don't do things much different then writing your vertices in an array and copying that into the vertex buffer, unless there really is a huge difference in how both APIs expect their vertices, it could cost virtually nothing.

Share this post


Link to post
Share on other sites

You should be able to handle the exactly same binary vertex data in both Direct3D9 and OpenGL. When using shaders, and generic vertex attributes on the OpenGL side, for example vertex colors can be defined as 4 normalized unsigned bytes in both APIs.

Share this post


Link to post
Share on other sites
That wiki doesn't describe a "D3D comparability mode", it just has some tips on how to do some operations that are easy in D3D but confusing in GL.

When it comes to less buffers & large strides, vs more buffers with small strides, no, there is not a preferred way for each API. They both cope with either way just as well as each other.

In D3D, the 'stream' param of the declaration is the index of the vertex buffer that will be read from. Before drawing, you must bind a vertex buffer to this slot with SetStreamSource.

As for the optimal data layout, it depends in multiple different vertex shaders use the same data (e.g. A shadow mapping shader only needs position, not normals, etc), and on the actual GPUs memory fetching hardware. This will operate like any CPU cache, where it will overfetch whole 'cache lines' from RAM - usually you'd want your vertex stride to match this size, which means putting multiple attributes together - back in this era of GPUs, 32 byte stride was the recommedation, but this depends on the GPU... However, as above, if you pack pos/normal together, then the shadow mapping shader will be loading normals into the cache for no reason, so maybe it would be preferable to have one buffer with just positions, and another with all other attributes...
Really though, don't worry too much about it. It doesn't matter if your GPU usage isn't 100% optimal.

Share this post


Link to post
Share on other sites

I personally think that this is too low-level an abstraction.  You shouldn't be going to a lower level than handing over a model's binary data to the API layers, then leaving details of vertex formats, buffer setup, layouts, etc to the individual API layers instead.  One key difference between the APIs here is that D3D decouples the vertex format specification from the data specification, whereas OpenGL does not (in 2.1; 4.3 resolves this) and this is going to cause you further problems as you work more on it.  Other differences, such as OpenGL's bind-to-modify thing, are also going to cause you trouble if you ever need to update a dynamic buffer.

 

This is far from the only API difference that will cause you problems; one I can quite confidently predict you'll have trouble with will be OpenGL tying uniform values to the currently selected program object but D3D having them as global state.  You'll also have trouble with lack of separate shader objects in OpenGL, with any render to texture setup (no FBOs in GL2.1) and with no equivalent to glActiveTexture in D3D (the texture stage to operate on is an additional param to the relevant API calls).  Not to mention sampler states vs glTexParameter.

Share this post


Link to post
Share on other sites

To some degree, you can pick your "favorite API" and then make the others emulate it. Like mhagain warned, actually doing this may require going through some contortions, and even though your program works correctly, you may run into non-optimal performance, usually on the OpenGL side.

 

For example I picked D3D as my favorite and wanted to emulate the simple SetRenderTarget / SetDepthStencil API with OpenGL FBO's. The initial and simple solution was to create a single FBO and attach different color buffers and depth buffers according to the currently set targets. This worked correctly, but exposed performance loss (to add insult to injury, it was Linux-only, Windows drivers were fine.) The solution to avoid the performance loss was to create several FBO's sorted by the resolution and format of the first color buffer, and what was only a few lines of code in D3D became hundreds in OpenGL :)

 

Additionally, to be able to utilize D3D11 effectively in the future you probably need to make your abstract API resemble D3D11 with its state objects, constant buffers etc. and emulate those in the other APIs.

Share this post


Link to post
Share on other sites
I've been working on making my project able to use multiple APIs albiet for now just Direct X 9 and 11. My first attempt was to emulate DirectX 11 and make Direct X 9 fit to it. Later because I wanted it to be easier for others to use my coded, I decided on a more high level solution. I've found that both have their plusses and minuses.

Low Level (pick your favorite api and emulate it )
Good
* It's easier to build higher level functionality because everything has the same base
Bad
* As AgentC said, you can run into some non-optimal situations that could take some "hacks" to fix.

High Level
Good
* You can code things in the most optimal way for the API.
Bad
* Without adequate planning it could almost be like coding two engines. You must be sure you isolate similarities or you'll end up coding many things twice.

Those are the issues that I've noticed so far. I'm sure there are more.

Share this post


Link to post
Share on other sites
Sign in to follow this  

  • Advertisement
  • Advertisement
  • Popular Tags

  • Popular Now

  • Advertisement
  • Similar Content

    • By mmmax3d
      Hi everyone,
      I would need some assistance from anyone who has a similar experience
      or a nice idea!
      I have created a skybox (as cube) and now I need to add a floor/ground.
      The skybox is created from cubemap and initially it was infinite.
      Now it is finite with a specific size. The floor is a quad in the middle
      of the skybox, like a horizon.
      I have two problems:
      When moving the skybox upwards or downwards, I need to
      sample from points even above the horizon while sampling
      from the botton at the same time.  I am trying to create a seamless blending of the texture
      at the points of the horizon, when the quad is connected
      to the skybox. However, I get skew effects. Does anybody has done sth similar?
      Is there any good practice?
      Thanks everyone!
    • By mmmax3d
      Hi everyone,
      I would need some assistance from anyone who has a similar experience
      or a nice idea!
      I have created a skybox (as cube) and now I need to add a floor/ground.
      The skybox is created from cubemap and initially it was infinite.
      Now it is finite with a specific size. The floor is a quad in the middle
      of the skybox, like a horizon.
      I have two problems:
      When moving the skybox upwards or downwards, I need to
      sample from points even above the horizon while sampling
      from the botton at the same time.  I am trying to create a seamless blending of the texture
      at the points of the horizon, when the quad is connected
      to the skybox. However, I get skew effects. Does anybody has done sth similar?
      Is there any good practice?
      Thanks everyone!
    • By iArtist93
      I'm trying to implement PBR into my simple OpenGL renderer and trying to use multiple lighting passes, I'm using one pass per light for rendering as follow:
      1- First pass = depth
      2- Second pass = ambient
      3- [3 .. n] for all the lights in the scene.
      I'm using the blending function glBlendFunc(GL_ONE, GL_ONE) for passes [3..n], and i'm doing a Gamma Correction at the end of each fragment shader.
      But i still have a problem with the output image it just looks noisy specially when i'm using texture maps.
      Is there anything wrong with those steps or is there any improvement to this process?
    • By babaliaris
      Hello Everyone!
      I'm learning openGL, and currently i'm making a simple 2D game engine to test what I've learn so far.  In order to not say to much, i made a video in which i'm showing you the behavior of the rendering.
      Video: 
       
      What i was expecting to happen, was the player moving around. When i render only the player, he moves as i would expect. When i add a second Sprite object, instead of the Player, this new sprite object is moving and finally if i add a third Sprite object the third one is moving. And the weird think is that i'm transforming the Vertices of the Player so why the transformation is being applied somewhere else?
       
      Take a look at my code:
      Sprite Class
      (You mostly need to see the Constructor, the Render Method and the Move Method)
      #include "Brain.h" #include <glm/gtc/matrix_transform.hpp> #include <vector> struct Sprite::Implementation { //Position. struct pos pos; //Tag. std::string tag; //Texture. Texture *texture; //Model matrix. glm::mat4 model; //Vertex Array Object. VertexArray *vao; //Vertex Buffer Object. VertexBuffer *vbo; //Layout. VertexBufferLayout *layout; //Index Buffer Object. IndexBuffer *ibo; //Shader. Shader *program; //Brains. std::vector<Brain *> brains; //Deconstructor. ~Implementation(); }; Sprite::Sprite(std::string image_path, std::string tag, float x, float y) { //Create Pointer To Implementaion. m_Impl = new Implementation(); //Set the Position of the Sprite object. m_Impl->pos.x = x; m_Impl->pos.y = y; //Set the tag. m_Impl->tag = tag; //Create The Texture. m_Impl->texture = new Texture(image_path); //Initialize the model Matrix. m_Impl->model = glm::mat4(1.0f); //Get the Width and the Height of the Texture. int width = m_Impl->texture->GetWidth(); int height = m_Impl->texture->GetHeight(); //Create the Verticies. float verticies[] = { //Positions //Texture Coordinates. x, y, 0.0f, 0.0f, x + width, y, 1.0f, 0.0f, x + width, y + height, 1.0f, 1.0f, x, y + height, 0.0f, 1.0f }; //Create the Indicies. unsigned int indicies[] = { 0, 1, 2, 2, 3, 0 }; //Create Vertex Array. m_Impl->vao = new VertexArray(); //Create the Vertex Buffer. m_Impl->vbo = new VertexBuffer((void *)verticies, sizeof(verticies)); //Create The Layout. m_Impl->layout = new VertexBufferLayout(); m_Impl->layout->PushFloat(2); m_Impl->layout->PushFloat(2); m_Impl->vao->AddBuffer(m_Impl->vbo, m_Impl->layout); //Create the Index Buffer. m_Impl->ibo = new IndexBuffer(indicies, 6); //Create the new shader. m_Impl->program = new Shader("Shaders/SpriteShader.shader"); } //Render. void Sprite::Render(Window * window) { //Create the projection Matrix based on the current window width and height. glm::mat4 proj = glm::ortho(0.0f, (float)window->GetWidth(), 0.0f, (float)window->GetHeight(), -1.0f, 1.0f); //Set the MVP Uniform. m_Impl->program->setUniformMat4f("u_MVP", proj * m_Impl->model); //Run All The Brains (Scripts) of this game object (sprite). for (unsigned int i = 0; i < m_Impl->brains.size(); i++) { //Get Current Brain. Brain *brain = m_Impl->brains[i]; //Call the start function only once! if (brain->GetStart()) { brain->SetStart(false); brain->Start(); } //Call the update function every frame. brain->Update(); } //Render. window->GetRenderer()->Draw(m_Impl->vao, m_Impl->ibo, m_Impl->texture, m_Impl->program); } void Sprite::Move(float speed, bool left, bool right, bool up, bool down) { if (left) { m_Impl->pos.x -= speed; m_Impl->model = glm::translate(m_Impl->model, glm::vec3(-speed, 0, 0)); } if (right) { m_Impl->pos.x += speed; m_Impl->model = glm::translate(m_Impl->model, glm::vec3(speed, 0, 0)); } if (up) { m_Impl->pos.y += speed; m_Impl->model = glm::translate(m_Impl->model, glm::vec3(0, speed, 0)); } if (down) { m_Impl->pos.y -= speed; m_Impl->model = glm::translate(m_Impl->model, glm::vec3(0, -speed, 0)); } } void Sprite::AddBrain(Brain * brain) { //Push back the brain object. m_Impl->brains.push_back(brain); } pos *Sprite::GetPos() { return &m_Impl->pos; } std::string Sprite::GetTag() { return m_Impl->tag; } int Sprite::GetWidth() { return m_Impl->texture->GetWidth(); } int Sprite::GetHeight() { return m_Impl->texture->GetHeight(); } Sprite::~Sprite() { delete m_Impl; } //Implementation Deconstructor. Sprite::Implementation::~Implementation() { delete texture; delete vao; delete vbo; delete layout; delete ibo; delete program; }  
      Renderer Class
      #include "Renderer.h" #include "Error.h" Renderer::Renderer() { } Renderer::~Renderer() { } void Renderer::Draw(VertexArray * vao, IndexBuffer * ibo, Texture *texture, Shader * program) { vao->Bind(); ibo->Bind(); program->Bind(); if (texture != NULL) texture->Bind(); GLCall(glDrawElements(GL_TRIANGLES, ibo->GetCount(), GL_UNSIGNED_INT, NULL)); } void Renderer::Clear(float r, float g, float b) { GLCall(glClearColor(r, g, b, 1.0)); GLCall(glClear(GL_COLOR_BUFFER_BIT)); } void Renderer::Update(GLFWwindow *window) { /* Swap front and back buffers */ glfwSwapBuffers(window); /* Poll for and process events */ glfwPollEvents(); }  
      Shader Code
      #shader vertex #version 330 core layout(location = 0) in vec4 aPos; layout(location = 1) in vec2 aTexCoord; out vec2 t_TexCoord; uniform mat4 u_MVP; void main() { gl_Position = u_MVP * aPos; t_TexCoord = aTexCoord; } #shader fragment #version 330 core out vec4 aColor; in vec2 t_TexCoord; uniform sampler2D u_Texture; void main() { aColor = texture(u_Texture, t_TexCoord); } Also i'm pretty sure that every time i'm hitting the up, down, left and right arrows on the keyboard, i'm changing the model Matrix of the Player and not the others.
       
      Window Class:
      #include "Window.h" #include <GL/glew.h> #include <GLFW/glfw3.h> #include "Error.h" #include "Renderer.h" #include "Scene.h" #include "Input.h" //Global Variables. int screen_width, screen_height; //On Window Resize. void OnWindowResize(GLFWwindow *window, int width, int height); //Implementation Structure. struct Window::Implementation { //GLFW Window. GLFWwindow *GLFW_window; //Renderer. Renderer *renderer; //Delta Time. double delta_time; //Frames Per Second. int fps; //Scene. Scene *scnene; //Input. Input *input; //Deconstructor. ~Implementation(); }; //Window Constructor. Window::Window(std::string title, int width, int height) { //Initializing width and height. screen_width = width; screen_height = height; //Create Pointer To Implementation. m_Impl = new Implementation(); //Try initializing GLFW. if (!glfwInit()) { std::cout << "GLFW could not be initialized!" << std::endl; std::cout << "Press ENTER to exit..." << std::endl; std::cin.get(); exit(-1); } //Setting up OpenGL Version 3.3 Core Profile. glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3); glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3); glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE); /* Create a windowed mode window and its OpenGL context */ m_Impl->GLFW_window = glfwCreateWindow(width, height, title.c_str(), NULL, NULL); if (!m_Impl->GLFW_window) { std::cout << "GLFW could not create a window!" << std::endl; std::cout << "Press ENTER to exit..." << std::endl; std::cin.get(); glfwTerminate(); exit(-1); } /* Make the window's context current */ glfwMakeContextCurrent(m_Impl->GLFW_window); //Initialize GLEW. if(glewInit() != GLEW_OK) { std::cout << "GLEW could not be initialized!" << std::endl; std::cout << "Press ENTER to exit..." << std::endl; std::cin.get(); glfwTerminate(); exit(-1); } //Enabling Blending. GLCall(glEnable(GL_BLEND)); GLCall(glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)); //Setting the ViewPort. GLCall(glViewport(0, 0, width, height)); //**********Initializing Implementation**********// m_Impl->renderer = new Renderer(); m_Impl->delta_time = 0.0; m_Impl->fps = 0; m_Impl->input = new Input(this); //**********Initializing Implementation**********// //Set Frame Buffer Size Callback. glfwSetFramebufferSizeCallback(m_Impl->GLFW_window, OnWindowResize); } //Window Deconstructor. Window::~Window() { delete m_Impl; } //Window Main Loop. void Window::MainLoop() { //Time Variables. double start_time = 0, end_time = 0, old_time = 0, total_time = 0; //Frames Counter. int frames = 0; /* Loop until the user closes the window */ while (!glfwWindowShouldClose(m_Impl->GLFW_window)) { old_time = start_time; //Total time of previous frame. start_time = glfwGetTime(); //Current frame start time. //Calculate the Delta Time. m_Impl->delta_time = start_time - old_time; //Get Frames Per Second. if (total_time >= 1) { m_Impl->fps = frames; total_time = 0; frames = 0; } //Clearing The Screen. m_Impl->renderer->Clear(0, 0, 0); //Render The Scene. if (m_Impl->scnene != NULL) m_Impl->scnene->Render(this); //Updating the Screen. m_Impl->renderer->Update(m_Impl->GLFW_window); //Increasing frames counter. frames++; //End Time. end_time = glfwGetTime(); //Total time after the frame completed. total_time += end_time - start_time; } //Terminate GLFW. glfwTerminate(); } //Load Scene. void Window::LoadScene(Scene * scene) { //Set the scene. m_Impl->scnene = scene; } //Get Delta Time. double Window::GetDeltaTime() { return m_Impl->delta_time; } //Get FPS. int Window::GetFPS() { return m_Impl->fps; } //Get Width. int Window::GetWidth() { return screen_width; } //Get Height. int Window::GetHeight() { return screen_height; } //Get Input. Input * Window::GetInput() { return m_Impl->input; } Renderer * Window::GetRenderer() { return m_Impl->renderer; } GLFWwindow * Window::GetGLFWindow() { return m_Impl->GLFW_window; } //Implementation Deconstructor. Window::Implementation::~Implementation() { delete renderer; delete input; } //OnWindowResize void OnWindowResize(GLFWwindow *window, int width, int height) { screen_width = width; screen_height = height; //Updating the ViewPort. GLCall(glViewport(0, 0, width, height)); }  
      Brain Class
      #include "Brain.h" #include "Sprite.h" #include "Window.h" struct Brain::Implementation { //Just A Flag. bool started; //Window Pointer. Window *window; //Sprite Pointer. Sprite *sprite; }; Brain::Brain(Window *window, Sprite *sprite) { //Create Pointer To Implementation. m_Impl = new Implementation(); //Initialize Implementation. m_Impl->started = true; m_Impl->window = window; m_Impl->sprite = sprite; } Brain::~Brain() { //Delete Pointer To Implementation. delete m_Impl; } void Brain::Start() { } void Brain::Update() { } Window * Brain::GetWindow() { return m_Impl->window; } Sprite * Brain::GetSprite() { return m_Impl->sprite; } bool Brain::GetStart() { return m_Impl->started; } void Brain::SetStart(bool value) { m_Impl->started = value; } Script Class (Its a Brain Subclass!!!)
      #include "Script.h" Script::Script(Window *window, Sprite *sprite) : Brain(window, sprite) { } Script::~Script() { } void Script::Start() { std::cout << "Game Started!" << std::endl; } void Script::Update() { Input *input = this->GetWindow()->GetInput(); Sprite *sp = this->GetSprite(); //Move this sprite. this->GetSprite()->Move(200 * this->GetWindow()->GetDeltaTime(), input->GetKeyDown("left"), input->GetKeyDown("right"), input->GetKeyDown("up"), input->GetKeyDown("down")); std::cout << sp->GetTag().c_str() << ".x = " << sp->GetPos()->x << ", " << sp->GetTag().c_str() << ".y = " << sp->GetPos()->y << std::endl; }  
      Main:
      #include "SpaceShooterEngine.h" #include "Script.h" int main() { Window w("title", 600,600); Scene *scene = new Scene(); Sprite *player = new Sprite("Resources/Images/player.png", "Player", 100,100); Sprite *other = new Sprite("Resources/Images/cherno.png", "Other", 400, 100); Sprite *other2 = new Sprite("Resources/Images/cherno.png", "Other", 300, 400); Brain *brain = new Script(&w, player); player->AddBrain(brain); scene->AddSprite(player); scene->AddSprite(other); scene->AddSprite(other2); w.LoadScene(scene); w.MainLoop(); return 0; }  
       
      I literally can't find what is wrong. If you need more code, ask me to post it. I will also attach all the source files.
      Brain.cpp
      Error.cpp
      IndexBuffer.cpp
      Input.cpp
      Renderer.cpp
      Scene.cpp
      Shader.cpp
      Sprite.cpp
      Texture.cpp
      VertexArray.cpp
      VertexBuffer.cpp
      VertexBufferLayout.cpp
      Window.cpp
      Brain.h
      Error.h
      IndexBuffer.h
      Input.h
      Renderer.h
      Scene.h
      Shader.h
      SpaceShooterEngine.h
      Sprite.h
      Texture.h
      VertexArray.h
      VertexBuffer.h
      VertexBufferLayout.h
      Window.h
    • By Cristian Decu
      Hello fellow programmers,
      For a couple of days now i've decided to build my own planet renderer just to see how floating point precision issues
      can be tackled. As you probably imagine, i've quickly faced FPP issues when trying to render absurdly large planets.
       
      I have used the classical quadtree LOD approach;
      I've generated my grids with 33 vertices, (x: -1 to 1, y: -1 to 1, z = 0).
      Each grid is managed by a TerrainNode class that, depending on the side it represents (top, bottom, left right, front, back),
      creates a special rotation-translation matrix that moves and rotates the grid away from the origin so that when i finally
      normalize all the vertices on my vertex shader i can get a perfect sphere.
      T = glm::translate(glm::dmat4(1.0), glm::dvec3(0.0, 0.0, 1.0)); R = glm::rotate(glm::dmat4(1.0), glm::radians(180.0), glm::dvec3(1.0, 0.0, 0.0)); sides[0] = new TerrainNode(1.0, radius, T * R, glm::dvec2(0.0, 0.0), new TerrainTile(1.0, SIDE_FRONT)); T = glm::translate(glm::dmat4(1.0), glm::dvec3(0.0, 0.0, -1.0)); R = glm::rotate(glm::dmat4(1.0), glm::radians(0.0), glm::dvec3(1.0, 0.0, 0.0)); sides[1] = new TerrainNode(1.0, radius, R * T, glm::dvec2(0.0, 0.0), new TerrainTile(1.0, SIDE_BACK)); // So on and so forth for the rest of the sides As you can see, for the front side grid, i rotate it 180 degrees to make it face the camera and push it towards the eye;
      the back side is handled almost the same way only that i don't need to rotate it but simply push it away from the eye.
      The same technique is applied for the rest of the faces (obviously, with the proper rotations / translations).
      The matrix that result from the multiplication of R and T (in that particular order) is send to my vertex shader as `r_Grid'.
      // spherify vec3 V = normalize((r_Grid * vec4(r_Vertex, 1.0)).xyz); gl_Position = r_ModelViewProjection * vec4(V, 1.0); The `r_ModelViewProjection' matrix is generated on the CPU in this manner.
      // No the most efficient way, but it works. glm::dmat4 Camera::getMatrix() { // Create the view matrix // Roll, Yaw and Pitch are all quaternions. glm::dmat4 View = glm::toMat4(Roll) * glm::toMat4(Pitch) * glm::toMat4(Yaw); // The model matrix is generated by translating in the oposite direction of the camera. glm::dmat4 Model = glm::translate(glm::dmat4(1.0), -Position); // Projection = glm::perspective(fovY, aspect, zNear, zFar); // zNear = 0.1, zFar = 1.0995116e12 return Projection * View * Model; } I managed to get rid of z-fighting by using a technique called Logarithmic Depth Buffer described in this article; it works amazingly well, no z-fighting at all, at least not visible.
      Each frame i'm rendering each node by sending the generated matrices this way.
      // set the r_ModelViewProjection uniform // Sneak in the mRadiusMatrix which is a matrix that contains the radius of my planet. Shader::setUniform(0, Camera::getInstance()->getMatrix() * mRadiusMatrix); // set the r_Grid matrix uniform i created earlier. Shader::setUniform(1, r_Grid); grid->render(); My planet's radius is around 6400000.0 units, absurdly large, but that's what i really want to achieve;
      Everything works well, the node's split and merge as you'd expect, however whenever i get close to the surface
      of the planet the rounding errors start to kick in giving me that lovely stairs effect.
      I've read that if i could render each grid relative to the camera i could get better precision on the surface, effectively
      getting rid of those rounding errors.
       
      My question is how can i achieve this relative to camera rendering in my scenario here?
      I know that i have to do most of the work on the CPU with double, and that's exactly what i'm doing.
      I only use double on the CPU side where i also do most of the matrix multiplications.
      As you can see from my vertex shader i only do the usual r_ModelViewProjection * (some vertex coords).
       
      Thank you for your suggestions!
       
  • Advertisement
×

Important Information

By using GameDev.net, you agree to our community Guidelines, Terms of Use, and Privacy Policy.

Participate in the game development conversation and more when you create an account on GameDev.net!

Sign me up!