Jump to content
  • Advertisement
Sign in to follow this  
Grumple

OpenGL Covering OpenGL viewport with a quad in perspective projection?

This topic is 1881 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

If you intended to correct an error in the post then please contact us.

Recommended Posts

Hi,

 

EDIT:
I'm causing confusion with unneeded details, the simplfied question I'm asking is:

 

Given a perspective projection, with known FOV, aspect ratio, etc, how can I find the corners of the view frustum at a given distance from the eye coordinate?

 

I'm sure I'm just missing something silly but it is driving me crazy!  As far as I can tell, in order to generate my corners, all I should need to do is use simple trig, ie:

 

            frustumHalfWidth  = tan(viewportHorzFOVRads / 2.0))  * distanceFromCamera
            frustumHalfHeight = tan(viewportVertFOVRads / 2.0))  * distanceFromCamera
 
In my tests if I render a quad at the specified distanceFromCamera using the calculated frustumWidth/Heights, it always appears 'too big' (or too close to camera depending on how you look at the problem).   I need to move the camera away from the quad along the z axis to get it to 'shrink' to viewport frustum size.
 

Can anyone explain why the math above wouldn't generate quad corners that fall on the horizontal and vertical edges of the viewport frustum?

Edited by Grumple

Share this post


Link to post
Share on other sites
Advertisement

Looks all right, but it's taken very much out of context and it's impossible to say if it's used correctly.

 

But I also want to ask: is the reason you're doing this because it's some kind of assignment and you have to show that you understand projections, or that you are under the misconception that you can't have more than one projection matrix?

 

With as little context as you actually provided, is it not a solution to draw this quad with an orthographic projection, and the rest with a perspective projection? After all, it seems like all you're after is getting the quad to fit to the screen.

Share this post


Link to post
Share on other sites

This is a personal project that involves displaying imagery captured with a real life camera at correct perspective in opengl.  Ultimately I don't really need or want it to perfectly cover the viewport, but I'm using this test case to ensure I have a good grasp on the projection.  

 

My theory for this experiment is that if I have a camera with a 90 degree horizontal field of view, I should be able to create a GL viewport with the same field of view and aspect ratio, then perfectly cover the viewport with an image from the camera in my opengl scene. 

 

The real goal is to ensure I can make my Opengl scene match the real world camera conditions at the time an image was taken.

Share this post


Link to post
Share on other sites

If your camera image is mapped to the entire screen, then the projection setup you use when drawing the image is entirely irrelevant and will have no relation to the camera capturing the image. You need to set up the matrix correctly for other things you draw, of course, and that involves matching the FOV, orientation, aspect ratio and such. But for the captured image itself, this process is entirely irrelevant.

Share this post


Link to post
Share on other sites

Yeah, the image stuff is certainly not critical to this specific problem, I was just giving some background information.

 

Maybe I should reword my problem to avoid confusion:

 

Given a perspective projection, with known FOV, aspect ratio, etc, how can I find the corners of the view frustum at a given distance from the eye coordinate?

Share this post


Link to post
Share on other sites

The formulas you gave your first post will do just that, given that you have calculated the field of view correctly based on the aspect ratio.

hfov = atan(tan(vfov/2)*aspect)*2;

Share this post


Link to post
Share on other sites

You can convert points from clipping space to camera space by multiplying vertices in clipping space. Clipping space is the view space between camera space and the screen. The x, y, and z of all of the points lie between -1 and 1. X and Y represent the screen position and Z represents the depth.  So the vertex (-1, 1, -1) transformed to camera space represents the top left corner sitting on the near clipping plane. Moving Z from -1 to 1 moves the transformed point from the near clipping plane to the far clipping plane.

 

To transform from clipping space to camera space you first take the inverse of the perspective matrix, I will refer to this matrix as P-1. For each vertex you add a fourth component, w, and set its value to 1. So (-1, 1, -1) becomes (-1, 1, -1, 1). You multiply the resulting 4 dimensional vector by P-1. After multiplying by P-1 you divide the entire vector its own w value. The resulting vector will be in camera space. You can then multiply the point by camera world matrix to convert that point to world space.

 

That is more or less what gluUnProject does, if you want to go this route I would recommend using gluUnProject.

 

 

The four points you would have to transform using this method to get a quad to cover the whole screen would be (-1, -1, z) (-1, 1, z) (1, 1, z) (1, -1, z) where z = (zFar + zNear + 2 * zFar * zNear / desiredZ) / (zFar - zNear). desiredZ is how far you want the plane and zNear and zFar are the near and far clipping plane distances for the camera.

 

That will give you the four corners of the quad that will cover the screen sitting at desiredZ away from the camera.

 

 

 

Although I would just recommend you set both the perspective and modelview matrix to the identity matrix and then render the quad (-1, -1, z) (-1, 1, z) (1, 1, z) (1, -1, z) where z is the same as I have described above. The reason why I would do this is if you try to calculate the quad in world space you are essentially transforming geometry from clipping space to world space then back again. By using the identity for the perspective matrix and modelview matrix you dont actually do any transformation because the geometry is pre transformed.

Share this post


Link to post
Share on other sites

Thanks to both of you for your help.   Having had Brother Bob confirm my general approach was something that 'should work', I took a closer look at some of my core functionality.   

 

It appears the implementation I was using to generate a perspective projection matrix was wrong.  It's always worked for me and I've never tested it to this kind of accuracy.  After reviewing a tutorial on proper setup and making some changes to my gluPerspective() replacement, I'm getting the intended results when I render my 'full screen' quad.

 

HappyCoder, that is also a very useful trick that I hadn't thought of. 

 

Cheers!

Share this post


Link to post
Share on other sites
Sign in to follow this  

  • Advertisement
  • Advertisement
  • Popular Tags

  • Similar Content

    • By owenjr
      Hi, I'm a Multimedia Engineering student. I am about to finish my dergree and I'm already thinking about what topic to cover in my final college project.
      I'm interested in the procedural animation with c++ and OpenGL of creatures, something like a spider for example. Can someone tell me what are the issues I should investigate to carry it out? I understand that it has some dependence on artificial intelligence but I do not know to what extent. Can someone help me to find information about it? Thank you very much.
       
      Examples: 
      - Procedural multi-legged walking animation
      - Procedural Locomotion of Multi-Legged Characters in Dynamic Environments
    • By Lewa
      So, i'm still on my quest to unterstanding the intricacies of HDR and implementing this into my engine. Currently i'm at the step to implementing tonemapping. I stumbled upon this blogposts:
      http://filmicworlds.com/blog/filmic-tonemapping-operators/
      http://frictionalgames.blogspot.com/2012/09/tech-feature-hdr-lightning.html
      and tried to implement some of those mentioned tonemapping methods into my postprocessing shader.
      The issue is that none of them creates the same results as shown in the blogpost which definitely has to do with the initial range in which the values are stored in the HDR buffer. For simplicity sake i store the values between 0 and 1 in the HDR buffer (ambient light is 0.3, directional light is 0.7)
      This is the tonemapping code:
      vec3 Uncharted2Tonemap(vec3 x) { float A = 0.15; float B = 0.50; float C = 0.10; float D = 0.20; float E = 0.02; float F = 0.30; return ((x*(A*x+C*B)+D*E)/(x*(A*x+B)+D*F))-E/F; } This is without the uncharted tonemapping:
      This is with the uncharted tonemapping:
      Which makes the image a lot darker.
      The shader code looks like this:
      void main() { vec3 color = texture2D(texture_diffuse, vTexcoord).rgb; color = Uncharted2Tonemap(color); //gamma correction (use only if not done in tonemapping code) color = gammaCorrection(color); outputF = vec4(color,1.0f); } Now, from my understanding is that tonemapping should bring the range down from HDR to 0-1.
      But the output of the tonemapping function heavily depends on the initial range of the values in the HDR buffer. (You can't expect to set the sun intensity the first time to 10 and the second time to 1000 and excpect the same result if you feed that into the tonemapper.) So i suppose that this also depends on the exposure which i have to implement?
      To check this i plotted the tonemapping curve:
      You can see that the curve goes only up to around to a value of 0.21 (while being fed a value of 1) and then basically flattens out. (which would explain why the image got darker.)
       
      My guestion is: In what range should the values in the HDR buffer be which then get tonemapped? Do i have to bring them down to a range of 0-1 by multiplying with the exposure?
      For example, if i increase the values of the light by 10 (directional light would be 7 and ambient light 3) then i would need to divide HDR values by 10 in order to get a value range of 0-1 which then could be fed into the tonemapping curve. Is that correct?
    • By nOoNEE
      i am reading this book : link
      in the OpenGL Rendering Pipeline section there is a picture like this: link
      but the question is this i dont really understand why it is necessary to turn pixel data in to fragment and then fragment into pixel could please give me a source or a clear Explanation that why it is necessary ? thank you so mu
       
       
    • By Inbar_xz
      I'm using the OPENGL with eclipse+JOGL.
      My goal is to create movement of the camera and the player.
      I create main class, which create some box in 3D and hold 
      an object of PlayerAxis.
      I create PlayerAxis class which hold the axis of the player.
      If we want to move the camera, then in the main class I call to 
      the func "cameraMove"(from PlayerAxis) and it update the player axis.
      That's work good.
      The problem start if I move the camera on 2 axis, 
      for example if I move with the camera right(that's on the y axis)
      and then down(on the x axis) -
      in some point the move front is not to the front anymore..
      In order to move to the front, I do
      player.playerMoving(0, 0, 1);
      And I learn that in order to keep the front move, 
      I need to convert (0, 0, 1) to the player axis, and then add this.
      I think I dont do the convert right.. 
      I will be glad for help!

      Here is part of my PlayerAxis class:
       
      //player coordinate float x[] = new float[3]; float y[] = new float[3]; float z[] = new float[3]; public PlayerAxis(float move_step, float angle_move) { x[0] = 1; y[1] = 1; z[2] = -1; step = move_step; angle = angle_move; setTransMatrix(); } public void cameraMoving(float angle_step, String axis) { float[] new_x = x; float[] new_y = y; float[] new_z = z; float alfa = angle_step * angle; switch(axis) { case "x": new_z = addVectors(multScalar(z, COS(alfa)), multScalar(y, SIN(alfa))); new_y = subVectors(multScalar(y, COS(alfa)), multScalar(z, SIN(alfa))); break; case "y": new_x = addVectors(multScalar(x, COS(alfa)), multScalar(z, SIN(alfa))); new_z = subVectors(multScalar(z, COS(alfa)), multScalar(x, SIN(alfa))); break; case "z": new_x = addVectors(multScalar(x, COS(alfa)), multScalar(y, SIN(alfa))); new_y = subVectors(multScalar(y, COS(alfa)), multScalar(x, SIN(alfa))); } x = new_x; y = new_y; z = new_z; normalization(); } public void playerMoving(float x_move, float y_move, float z_move) { float[] move = new float[3]; move[0] = x_move; move[1] = y_move; move[2] = z_move; setTransMatrix(); float[] trans_move = transVector(move); position[0] = position[0] + step*trans_move[0]; position[1] = position[1] + step*trans_move[1]; position[2] = position[2] + step*trans_move[2]; } public void setTransMatrix() { for (int i = 0; i < 3; i++) { coordiTrans[0][i] = x[i]; coordiTrans[1][i] = y[i]; coordiTrans[2][i] = z[i]; } } public float[] transVector(float[] v) { return multiplyMatrixInVector(coordiTrans, v); }  
      and in the main class i have this:
       
      public void keyPressed(KeyEvent e) { if (e.getKeyCode()== KeyEvent.VK_ESCAPE) { System.exit(0); //player move } else if (e.getKeyCode()== KeyEvent.VK_W) { //front //moveAmount[2] += -0.1f; player.playerMoving(0, 0, 1); } else if (e.getKeyCode()== KeyEvent.VK_S) { //back //moveAmount[2] += 0.1f; player.playerMoving(0, 0, -1); } else if (e.getKeyCode()== KeyEvent.VK_A) { //left //moveAmount[0] += -0.1f; player.playerMoving(-1, 0, 0); } else if (e.getKeyCode()== KeyEvent.VK_D) { //right //moveAmount[0] += 0.1f; player.playerMoving(1, 0, 0); } else if (e.getKeyCode()== KeyEvent.VK_E) { //moveAmount[0] += 0.1f; player.playerMoving(0, 1, 0); } else if (e.getKeyCode()== KeyEvent.VK_Q) { //moveAmount[0] += 0.1f; player.playerMoving(0, -1, 0); //camera move } else if (e.getKeyCode()== KeyEvent.VK_I) { //up player.cameraMoving(1, "x"); } else if (e.getKeyCode()== KeyEvent.VK_K) { //down player.cameraMoving(-1, "x"); } else if (e.getKeyCode()== KeyEvent.VK_L) { //right player.cameraMoving(-1, "y"); } else if (e.getKeyCode()== KeyEvent.VK_J) { //left player.cameraMoving(1, "y"); } else if (e.getKeyCode()== KeyEvent.VK_O) { //right round player.cameraMoving(-1, "z"); } else if (e.getKeyCode()== KeyEvent.VK_U) { //left round player.cameraMoving(1, "z"); } }  
      finallt found it.... i confused with the transformation matrix row and col. thanks anyway!
    • By Lewa
      So, i'm currently trying to implement an SSAO shader from THIS tutorial and i'm running into a few issues here.
      Now, this SSAO method requires view space positions and normals. I'm storing the normals in my deferred renderer in world-space so i had to do a conversion and reconstruct the position from the depth buffer.
      And something there goes horribly wrong (which has probably to do with worldspace to viewspace transformations).
      (here is the full shader source code if someone wants to take a look at it)
      Now, i suspect that the normals are the culprit.
      vec3 normal = ((uNormalViewMatrix*vec4(normalize(texture2D(sNormals, vTexcoord).rgb),1.0)).xyz); "sNormals" is a 2D texture which stores the normals in world space in a RGB FP16 buffer.
      Now i can't use the camera viewspace matrix to transform the normals into viewspace as the cameras position isn't set at (0,0,0), thus skewing the result.
      So what i did is to create a new viewmatrix specifically for this normal without the position at vec3(0,0,0);
      //"camera" is the camera which was used for rendering the normal buffer renderer.setUniform4m(ressources->shaderSSAO->getUniform("uNormalViewMatrix"), glmExt::createViewMatrix(glm::vec3(0,0,0),camera.getForward(),camera.getUp())//parameters are (position,forwardVector,upVector) ); Though i have the feeling this is the wrong approach. Is this right or is there a better/correct way of transforming a world space normal into viewspace?
    • By HawkDeath
      Hi,
      I'm trying mix two textures using own shader system, but I have a problem (I think) with uniforms.
      Code: https://github.com/HawkDeath/shader/tree/test
      To debug I use RenderDocs, but I did not receive good results. In the first attachment is my result, in the second attachment is what should be.
      PS. I base on this tutorial https://learnopengl.com/Getting-started/Textures.


    • By norman784
      I'm having issues loading textures, as I'm clueless on how to handle / load images maybe I missing something, but the past few days I just google a lot to try to find a solution. Well theres two issues I think, one I'm using Kotlin Native (EAP) and OpenGL wrapper / STB image, so I'm not quite sure wheres the issue, if someone with more experience could give me some hints on how to solve this issue?
      The code is here, if I'm not mistaken the workflow is pretty straight forward, stbi_load returns the pixels of the image (as char array or byte array) and you need to pass those pixels directly to glTexImage2D, so a I'm missing something here it seems.
      Regards
    • By Hashbrown
      I've noticed in most post processing tutorials several shaders are used one after another: one for bloom, another for contrast, and so on. For example: 
      postprocessing.quad.bind() // Effect 1 effect1.shader.bind(); postprocessing.texture.bind(); postprocessing.quad.draw(); postprocessing.texture.unbind(); effect1.shader.unbind(); // Effect 2 effect2.shader.bind(); // ...and so on postprocessing.quad.unbind() Is this good practice, how many shaders can I bind and unbind before I hit performance issues? I'm afraid I don't know what the good practices are in open/webGL regarding binding and unbinding resources. 
      I'm guessing binding many shaders at post processing is okay since the scene has already been updated and I'm just working on a quad and texture at that moment. Or is it more optimal to put shader code in chunks and bind less frequently? I'd love to use several shaders at post though. 
      Another example of what I'm doing at the moment:
      1) Loop through GameObjects, bind its phong shader (send color, shadow, spec, normal samplers), unbind all.
      2) At post: bind post processor quad, and loop/bind through different shader effects, and so on ...
      Thanks all! 
    • By phil67rpg
      void collision(int v) { collision_bug_one(0.0f, 10.0f); glutPostRedisplay(); glutTimerFunc(1000, collision, 0); } void coll_sprite() { if (board[0][0] == 1) { collision(0); flag[0][0] = 1; } } void erase_sprite() { if (flag[0][0] == 1) { glColor3f(0.0f, 0.0f, 0.0f); glBegin(GL_POLYGON); glVertex3f(0.0f, 10.0f, 0.0f); glVertex3f(0.0f, 9.0f, 0.0f); glVertex3f(1.0f, 9.0f, 0.0f); glVertex3f(1.0f, 10.0f, 0.0f); glEnd(); } } I am using glutTimerFunc to wait a small amount of time to display a collision sprite before I black out the sprite. unfortunately my code only blacks out the said sprite without drawing the collision sprite, I have done a great deal of research on the glutTimerFunc and  animation.
    • By Lewa
      So, i stumbled upon the topic of gamma correction.
      https://learnopengl.com/Advanced-Lighting/Gamma-Correction
      So from what i've been able to gather: (Please correct me if i'm wrong)
      Old CRT monitors couldn't display color linearly, that's why gamma correction was nessecary. Modern LCD/LED monitors don't have this issue anymore but apply gamma correction anyway. (For compatibility reasons? Can this be disabled?) All games have to apply gamma correction? (unsure about that) All textures stored in file formats (.png for example) are essentially stored in SRGB color space (as what we see on the monitor is skewed due to gamma correction. So the pixel information is the same, the percieved colors are just wrong.) This makes textures loaded into the GL_RGB format non linear, thus all lighting calculations are wrong You have to always use the GL_SRGB format to gamma correct/linearise textures which are in SRGB format  
      Now, i'm kinda confused how to proceed with applying gamma correction in OpenGL.
      First of, how can i check if my Monitor is applying gamma correction? I noticed in my monitor settings that my color format is set to "RGB" (can't modify it though.) I'm connected to my PC via a HDMI cable. I'm also using the full RGB range (0-255, not the 16 to ~240 range)
       
      What i tried to do is to apply a gamma correction shader shown in the tutorial above which looks essentially like this: (it's a postprocess shader which is applied at the end of the renderpipeline)
      vec3 gammaCorrection(vec3 color){ // gamma correction color = pow(color, vec3(1.0/2.2)); return color; } void main() { vec3 color; vec3 tex = texture2D(texture_diffuse, vTexcoord).rgb; color = gammaCorrection(tex); outputF = vec4(color,1.0f); } The results look like this:
      No gamma correction:
      With gamma correction:
       
      The colors in the gamma corrected image look really wased out. (To the point that it's damn ugly. As if someone overlayed a white half transparent texture. I want the colors to pop.)
      Do i have to change the textures from GL_RGB to GL_SRGB in order to gamma correct them in addition to applying the post process gamma correction shader? Do i have to do the same thing with all FBOs? Or is this washed out look the intended behaviour?
  • Advertisement
  • Popular Now

  • Forum Statistics

    • Total Topics
      631374
    • Total Posts
      2999661
×

Important Information

By using GameDev.net, you agree to our community Guidelines, Terms of Use, and Privacy Policy.

Participate in the game development conversation and more when you create an account on GameDev.net!

Sign me up!