• Advertisement
Sign in to follow this  

OpenGL Texture loading with devIL

This topic is 1640 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

If you intended to correct an error in the post then please contact us.

Recommended Posts

Hello !




I tried to use devIL to import textures into OpenGL, my soft pass all the tests durring the loading of the devIL image and I get a "texture successfully loaded" BUT the result after building is that the texture is empty in the fragment shader sad.png (so I get a black rectangle)


So, to be sure that the problem is totally about the devIL loading, i tried with a DDS loader, and that worked.


My texture is 128 x 128 and 24 depth


Here is my code :



Vertex Shader :

#version 400

uniform mat4 model_matrix;
uniform mat4 projection_matrix;

layout (location = 0) in vec4 position;
layout (location = 1) in vec2 instance_uv;

out vec2 UV;

void main(void)
    UV = instance_uv;
    gl_Position = position;

Fragment Shader :

#version 400 core

// Interpolated values from the vertex shaders
in vec2 UV;

// Ouput data
out vec4 color;

// Values that stay constant for the whole mesh.
uniform sampler2D myTextureSampler;

void main(){

    // Output color = color of the texture at the specified UV
    color = texture( myTextureSampler, UV.xy ).rgba;


#include <stdlib.h>
#include <stdio.h>
#include <iostream>

#include <GL\glew.h>
#include <GL\freeglut.h>

#include <vgl.h>

#include <LoadShaders.h>
#include <IL\il.h>
#include <IL\ilut.h>
#include <IL\ilu.h>

#include "texture.hpp"

#define INSTANCE_COUNT 200

    float aspect;
    GLuint render_prog;
    GLuint vao[1];
    GLuint vbo[1];
    GLuint ebo[1];

    GLint render_model_matrix_loc;
    GLint render_projection_matrix_loc;
    ILuint images[2];
    GLuint texture;
    GLuint TextureLoc;

GLuint loadImage(const char* theFileName)// devIL loader
	ILuint imageID;				// Create an image ID as a ULuint
	GLuint textureID;			// Create a texture ID as a GLuint
	ILboolean success;			// Create a flag to keep track of success/failure
	ILenum error;				// Create a flag to keep track of the IL error state
	ilGenImages(1, &imageID); 		// Generate the image ID
	ilBindImage(imageID); 			// Bind the image
	success = ilLoadImage(theFileName); 	// Load the image file
	// If we managed to load the image, then we can start to do things with it...
	if (success)
		// If the image is flipped (i.e. upside-down and mirrored, flip it the right way up!)
		ILinfo ImageInfo;
		if (ImageInfo.Origin == IL_ORIGIN_UPPER_LEFT)
		// Convert the image into a suitable format to work with
		// NOTE: If your image contains alpha channel you can replace IL_RGB with IL_RGBA
		success = ilConvertImage(IL_RGB, IL_UNSIGNED_BYTE);
		// Quit out if we failed the conversion
		if (!success)
			error = ilGetError();
			std::cout << "Image conversion failed - IL reports error: " << error << " - " << iluErrorString(error) << std::endl;
		// Generate a new texture
		glGenTextures(1, &textureID);
		// Bind the texture to a name
		glBindTexture(GL_TEXTURE_2D, textureID);
		// Set texture clamping method
		// Set texture interpolation method to use linear interpolation (no MIPMAPS)
		// Specify the texture specification
		glTexImage2D(GL_TEXTURE_2D, 				// Type of texture
					 0,				// Pyramid level (for mip-mapping) - 0 is the top level
					 ilGetInteger(IL_IMAGE_BPP),	// Image colour depth
					 ilGetInteger(IL_IMAGE_WIDTH),	// Image width
					 ilGetInteger(IL_IMAGE_HEIGHT),	// Image height
					 0,				// Border width in pixels (can either be 1 or 0)
					 ilGetInteger(IL_IMAGE_FORMAT),	// Image format (i.e. RGB, RGBA, BGR etc.)
					 GL_UNSIGNED_BYTE,		// Image data type
					 ilGetData());			// The actual image data itself
  	else // If we failed to open the image file in the first place...
		error = ilGetError();
		std::cout << "Image load failed - IL reports error: " << error << " - " << iluErrorString(error) << std::endl;
 	ilDeleteImages(1, &imageID); // Because we have already copied image data into texture data we can release memory used by image.
	std::cout << "Texture creation successful." << std::endl;
	return textureID; // Return the GLuint to the texture so you can use it!

void init()

	ShaderInfo shader_info[] =
        { GL_VERTEX_SHADER, "instance.vert" },
        { GL_FRAGMENT_SHADER, "instance.frag" },
        { GL_NONE, NULL }

	render_prog = LoadShaders(shader_info);

	render_model_matrix_loc = glGetUniformLocation(render_prog, "model_matrix");
    render_projection_matrix_loc = glGetUniformLocation(render_prog, "projection_matrix");

	    // A single triangle
    static const GLfloat vertex_positions[] =
        -0.5f, -0.5f, 0.0f, 1.0f,
         0.5f, -0.5f, 0.0f, 1.0f,
         0.5f,  0.5f, 0.0f, 1.0f,
        -0.5f,  0.5f, 0.0f, 1.0f

	static const GLfloat vertex_uv[] =
		0.0, 1.0,
		1.0, 1.0,
		1.0, 0.0,
		0.0, 0.0

    // Indices for the triangle strips
    static const GLushort vertex_indices[] =
        0, 1, 2, 3

	glGenVertexArrays(1, vao);

	glGenBuffers(1, vbo);
	glBindBuffer(GL_ARRAY_BUFFER, vbo[0]);
	glBufferData(GL_ARRAY_BUFFER, sizeof(vertex_positions) + sizeof(vertex_uv)  , NULL, GL_STATIC_DRAW);
	glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(vertex_positions), vertex_positions);
	glBufferSubData(GL_ARRAY_BUFFER, sizeof(vertex_positions), sizeof(vertex_uv), vertex_uv);

	glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE, 0, (const GLvoid*) 0);
	glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 0, (const GLvoid*) sizeof(vertex_positions));
	//texture = loadDDS("uvtemplate.DDS"); works

	texture = loadImage("test.jpg"); // doesn't work

	TextureLoc  = glGetUniformLocation(render_prog, "myTextureSampler");
    glClearColor(1.0f, 0.0f, 0.0f, 1.0f);

void display()
    // Setup


	glBindTexture(GL_TEXTURE_2D, texture);
	// Set our "myTextureSampler" sampler to user Texture Unit 0
	glUniform1i(TextureLoc, 0);


	glDrawArrays(GL_TRIANGLE_FAN, 0, 4);




void Reshape(int width, int height)
	glViewport(0, 0 , width, height);
    aspect = float(height) / float(width);

int main(int argc, char **argv)
	glutInit(&argc, argv);
    glutInitWindowSize(1024, 768);
	glutInitContextVersion(4, 0);
    glutInitWindowPosition (140, 140);
    glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE);

	if (glewInit())
		std::cout << "Une erreur est survenue lors de l'init de glew" << std::endl; 




        glDeleteVertexArrays(1, vao);
        glDeleteBuffers(1, vbo);
        glDeleteTextures(1, &texture);
	return 0;

Thank you for your help !

Edited by shocobenn

Share this post

Link to post
Share on other sites

I would agree. I have had DevIL for basic image loading, but its not documented well anymore and for things like DDS textures etc it starts to blow up. It does work though.

SOIL may be better.

Share this post

Link to post
Share on other sites

Ah, if you still want to use the DevIL library, just use the ilutGLLoadImage function, to replace your loadImage function.

This works very well for me.

Share this post

Link to post
Share on other sites
Sign in to follow this  

  • Advertisement
  • Advertisement
  • Popular Now

  • Advertisement
  • Similar Content

    • By Balma Alparisi
      i got error 1282 in my code.
      sf::ContextSettings settings; settings.majorVersion = 4; settings.minorVersion = 5; settings.attributeFlags = settings.Core; sf::Window window; window.create(sf::VideoMode(1600, 900), "Texture Unit Rectangle", sf::Style::Close, settings); window.setActive(true); window.setVerticalSyncEnabled(true); glewInit(); GLuint shaderProgram = createShaderProgram("FX/Rectangle.vss", "FX/Rectangle.fss"); float vertex[] = { -0.5f,0.5f,0.0f, 0.0f,0.0f, -0.5f,-0.5f,0.0f, 0.0f,1.0f, 0.5f,0.5f,0.0f, 1.0f,0.0f, 0.5,-0.5f,0.0f, 1.0f,1.0f, }; GLuint indices[] = { 0,1,2, 1,2,3, }; GLuint vao; glGenVertexArrays(1, &vao); glBindVertexArray(vao); GLuint vbo; glGenBuffers(1, &vbo); glBindBuffer(GL_ARRAY_BUFFER, vbo); glBufferData(GL_ARRAY_BUFFER, sizeof(vertex), vertex, GL_STATIC_DRAW); GLuint ebo; glGenBuffers(1, &ebo); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ebo); glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices,GL_STATIC_DRAW); glVertexAttribPointer(0, 3, GL_FLOAT, false, sizeof(float) * 5, (void*)0); glEnableVertexAttribArray(0); glVertexAttribPointer(1, 2, GL_FLOAT, false, sizeof(float) * 5, (void*)(sizeof(float) * 3)); glEnableVertexAttribArray(1); GLuint texture[2]; glGenTextures(2, texture); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, texture[0]); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); sf::Image* imageOne = new sf::Image; bool isImageOneLoaded = imageOne->loadFromFile("Texture/container.jpg"); if (isImageOneLoaded) { glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, imageOne->getSize().x, imageOne->getSize().y, 0, GL_RGBA, GL_UNSIGNED_BYTE, imageOne->getPixelsPtr()); glGenerateMipmap(GL_TEXTURE_2D); } delete imageOne; glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, texture[1]); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); sf::Image* imageTwo = new sf::Image; bool isImageTwoLoaded = imageTwo->loadFromFile("Texture/awesomeface.png"); if (isImageTwoLoaded) { glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, imageTwo->getSize().x, imageTwo->getSize().y, 0, GL_RGBA, GL_UNSIGNED_BYTE, imageTwo->getPixelsPtr()); glGenerateMipmap(GL_TEXTURE_2D); } delete imageTwo; glUniform1i(glGetUniformLocation(shaderProgram, "inTextureOne"), 0); glUniform1i(glGetUniformLocation(shaderProgram, "inTextureTwo"), 1); GLenum error = glGetError(); std::cout << error << std::endl; sf::Event event; bool isRunning = true; while (isRunning) { while (window.pollEvent(event)) { if (event.type == event.Closed) { isRunning = false; } } glClear(GL_COLOR_BUFFER_BIT); if (isImageOneLoaded && isImageTwoLoaded) { glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, texture[0]); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, texture[1]); glUseProgram(shaderProgram); } glBindVertexArray(vao); glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, nullptr); glBindVertexArray(0); window.display(); } glDeleteVertexArrays(1, &vao); glDeleteBuffers(1, &vbo); glDeleteBuffers(1, &ebo); glDeleteProgram(shaderProgram); glDeleteTextures(2,texture); return 0; } and this is the vertex shader
      #version 450 core layout(location=0) in vec3 inPos; layout(location=1) in vec2 inTexCoord; out vec2 TexCoord; void main() { gl_Position=vec4(inPos,1.0); TexCoord=inTexCoord; } and the fragment shader
      #version 450 core in vec2 TexCoord; uniform sampler2D inTextureOne; uniform sampler2D inTextureTwo; out vec4 FragmentColor; void main() { FragmentColor=mix(texture(inTextureOne,TexCoord),texture(inTextureTwo,TexCoord),0.2); } I was expecting awesomeface.png on top of container.jpg

    • By khawk
      We've just released all of the source code for the NeHe OpenGL lessons on our Github page at https://github.com/gamedev-net/nehe-opengl. code - 43 total platforms, configurations, and languages are included.
      Now operated by GameDev.net, NeHe is located at http://nehe.gamedev.net where it has been a valuable resource for developers wanting to learn OpenGL and graphics programming.

      View full story
    • By TheChubu
      The Khronos™ Group, an open consortium of leading hardware and software companies, announces from the SIGGRAPH 2017 Conference the immediate public availability of the OpenGL® 4.6 specification. OpenGL 4.6 integrates the functionality of numerous ARB and EXT extensions created by Khronos members AMD, Intel, and NVIDIA into core, including the capability to ingest SPIR-V™ shaders.
      SPIR-V is a Khronos-defined standard intermediate language for parallel compute and graphics, which enables content creators to simplify their shader authoring and management pipelines while providing significant source shading language flexibility. OpenGL 4.6 adds support for ingesting SPIR-V shaders to the core specification, guaranteeing that SPIR-V shaders will be widely supported by OpenGL implementations.
      OpenGL 4.6 adds the functionality of these ARB extensions to OpenGL’s core specification:
      GL_ARB_gl_spirv and GL_ARB_spirv_extensions to standardize SPIR-V support for OpenGL GL_ARB_indirect_parameters and GL_ARB_shader_draw_parameters for reducing the CPU overhead associated with rendering batches of geometry GL_ARB_pipeline_statistics_query and GL_ARB_transform_feedback_overflow_querystandardize OpenGL support for features available in Direct3D GL_ARB_texture_filter_anisotropic (based on GL_EXT_texture_filter_anisotropic) brings previously IP encumbered functionality into OpenGL to improve the visual quality of textured scenes GL_ARB_polygon_offset_clamp (based on GL_EXT_polygon_offset_clamp) suppresses a common visual artifact known as a “light leak” associated with rendering shadows GL_ARB_shader_atomic_counter_ops and GL_ARB_shader_group_vote add shader intrinsics supported by all desktop vendors to improve functionality and performance GL_KHR_no_error reduces driver overhead by allowing the application to indicate that it expects error-free operation so errors need not be generated In addition to the above features being added to OpenGL 4.6, the following are being released as extensions:
      GL_KHR_parallel_shader_compile allows applications to launch multiple shader compile threads to improve shader compile throughput WGL_ARB_create_context_no_error and GXL_ARB_create_context_no_error allow no error contexts to be created with WGL or GLX that support the GL_KHR_no_error extension “I’m proud to announce OpenGL 4.6 as the most feature-rich version of OpenGL yet. We've brought together the most popular, widely-supported extensions into a new core specification to give OpenGL developers and end users an improved baseline feature set. This includes resolving previous intellectual property roadblocks to bringing anisotropic texture filtering and polygon offset clamping into the core specification to enable widespread implementation and usage,” said Piers Daniell, chair of the OpenGL Working Group at Khronos. “The OpenGL working group will continue to respond to market needs and work with GPU vendors to ensure OpenGL remains a viable and evolving graphics API for all its customers and users across many vital industries.“
      The OpenGL 4.6 specification can be found at https://khronos.org/registry/OpenGL/index_gl.php. The GLSL to SPIR-V compiler glslang has been updated with GLSL 4.60 support, and can be found at https://github.com/KhronosGroup/glslang.
      Sophisticated graphics applications will also benefit from a set of newly released extensions for both OpenGL and OpenGL ES to enable interoperability with Vulkan and Direct3D. These extensions are named:
      GL_EXT_memory_object GL_EXT_memory_object_fd GL_EXT_memory_object_win32 GL_EXT_semaphore GL_EXT_semaphore_fd GL_EXT_semaphore_win32 GL_EXT_win32_keyed_mutex They can be found at: https://khronos.org/registry/OpenGL/index_gl.php
      Industry Support for OpenGL 4.6
      “With OpenGL 4.6 our customers have an improved set of core features available on our full range of OpenGL 4.x capable GPUs. These features provide improved rendering quality, performance and functionality. As the graphics industry’s most popular API, we fully support OpenGL and will continue to work closely with the Khronos Group on the development of new OpenGL specifications and extensions for our customers. NVIDIA has released beta OpenGL 4.6 drivers today at https://developer.nvidia.com/opengl-driver so developers can use these new features right away,” said Bob Pette, vice president, Professional Graphics at NVIDIA.
      "OpenGL 4.6 will be the first OpenGL release where conformant open source implementations based on the Mesa project will be deliverable in a reasonable timeframe after release. The open sourcing of the OpenGL conformance test suite and ongoing work between Khronos and X.org will also allow for non-vendor led open source implementations to achieve conformance in the near future," said David Airlie, senior principal engineer at Red Hat, and developer on Mesa/X.org projects.

      View full story
    • By _OskaR
      I have an OpenGL application but without possibility to wite own shaders.
      I need to perform small VS modification - is possible to do it in an alternative way? Do we have apps or driver modifictions which will catch the shader sent to GPU and override it?
    • By xhcao
      Does sync be needed to read texture content after access texture image in compute shader?
      My simple code is as below,
      glBindImageTexture(0, texture[0], 0, GL_FALSE, 3, GL_READ_ONLY, GL_R32UI);
      glBindImageTexture(1, texture[1], 0, GL_FALSE, 4, GL_WRITE_ONLY, GL_R32UI);
      glDispatchCompute(1, 1, 1);
      // Does sync be needed here?
      glBindFramebuffer(GL_READ_FRAMEBUFFER, framebuffer);
                                     GL_TEXTURE_CUBE_MAP_POSITIVE_X + face, texture[1], 0);
      glReadPixels(0, 0, kWidth, kHeight, GL_RED_INTEGER, GL_UNSIGNED_INT, outputValues);
      Compute shader is very simple, imageLoad content from texture[0], and imageStore content to texture[1]. Does need to sync after dispatchCompute?
  • Advertisement