• Advertisement
Sign in to follow this  

OpenGL Rendering a texture

This topic is 1638 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

If you intended to correct an error in the post then please contact us.

Recommended Posts

Hello!

 

I am very new to OpenGL and have a basic problem: I want to render 2 quads each with its own texture.

First I have an init function which loads the texture, generates the texture IDs and uploads the texture:

void initTex(TexObj& texObj, const char* imageFilename) // Images are .xpm files
{
   QImage image = QImage(imageFilename);
    texObj.w = image.width();
    texObj.h = image.height();

    QImage glImage;
    glImage = QGLWidget::convertToGLFormat(image);

    char* data = static_cast<char*>( calloc( texObj.w *  texObj.h, 4) ); 
    memcpy(data, glImage.bits(), texObj.w * texObj.h * 4);

    texObj.data = data
    glGenTextures(1, &texObj.texID);
    glBindTexture(GL_TEXTURE_2D, texObj.texID);
    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, texObj.w, texObj.h, 0, GL_RGBA, GL_UNSIGNED_BYTE,  texObj.data);
}

Function initTex is called 2 times (for 2 different textures).

 

To render the 2 quads I use this function:

static void draw(TexObj& tex, float scale)
{
    glEnable(GL_CULL_FACE);
    glEnable( GL_TEXTURE_2D );
    glFrontFace( GL_CCW );

    glActiveTexture( GL_TEXTURE0 );
    glBindTexture(GL_TEXTURE_2D, tex.texID);

   // glTexImage2D( GL_TEXTURE_2D, 0, GL_RGB, tex->w, tex->h, 0, GL_RGBA, GL_UNSIGNED_BYTE, tex->data );

    glTexParameterf (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR) ;
    glTexParameterf (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR) ;
    glTexEnvf (GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE) ; 

    glTranslated( 0.0, 0.0, 0.0 );
    glScalef( scale, scale, 1.0f );
   
      glPolygonMode(GL_FRONT, GL_FILL);
    glBegin(GL_POLYGON);
        glTexCoord2f( 0.0, 0.0 );
        glVertex2d(0.0, 1.0);
        glTexCoord2f( 0.0, -1.0 );
        glVertex2d(0.0, 0.0);
        glTexCoord2f( 1.0, -1.0 );
        glVertex2d(1.0, 0.0);
        glTexCoord2f( 1.0, 0.0 );
        glVertex2d(1.0, 1.0);
    glEnd();

    glDisable( GL_TEXTURE_2D );
    glDisable(GL_CULL_FACE);
}

The problem is: When I let this code run the quads are completely white!

The strange thing: When I comment in the outcommented line (glTexImage2D), the quads are textured! It seems like as if the texture I load into the VRAM in function init() is disappeared and I have to upload it every frame.

 

Does anyone have an idea what could cause this?

Thanks!

 

 

Share this post


Link to post
Share on other sites
Advertisement

1. Move the following lines to the end of initTexture (there's no point repeastedly doing this)

glTexParameterf (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR) ;
glTexParameterf (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR) ;
glTexEnvf (GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE) ;

2. Why are you doing this:  texObj.data = data ? Unless it's for a very specific reason (getting heightmap values on the CPU side, as well as the GPU), it's just wasting memory. You can skip everything involving copying the data from the image (the calloc + memcpy), and instead just pass glImage.bits() to glTexImage2D directly.

 

3. You might find that using glPushMatrix / glPopMatrix surrounding the scaling and drawing of the quad will be useful (stops the transforms leaking into other draw calls).

4. glTranslated( 0.0, 0.0, 0.0 );  << this is pointless.

5.
enabling / disabling texturing and face culling constantly is a bit silly. You'd be better off moving those outside so you can do:

 

[source]
glEnable(GL_TEXTURE_2D);
glEnable(GL_CULL_FACE);

// draw all textured quads.

glDisable(GL_CULL_FACE);
glDisable(GL_TEXTURE_2D);
[/source]

6. glFrontFace( GL_CCW );  This is something you shouldn't need to be calling everytime you draw a single quad. Just once on start up will do fine (and then keep everything with the same winding order).
 

The problem is: When I let this code run the quads are completely white!

Check the values of tex.texID. Are they the same two values used when generating the texture?

The strange thing: When I comment in the outcommented line (glTexImage2D), the quads are textured! It seems like as if the texture I load into the VRAM in function init() is disappeared and I have to upload it every frame.

Which makes me think that you have either an invalid texture object, or that it's changing it's id somehow. You are initializing the textures AFTER you create the window right? (otherwise the gl context would be invalid, and the texture creation will fail).

 

So to recap, the rest of your app looks a little like this right?

[source]

TexObj g_tex1;

TexObj g_tex2;

int initGL()
{
   // initialize and create GL window

   // now textures are created.
   initTex(g_tex1, "file1.bmp");
   initTex(g_tex2, "file2.bmp");
}

void drawMethod()
{

  draw(g_tex1, 1.0f);
  draw(g_tex2, 1.0f);
}
[/source]

Share this post


Link to post
Share on other sites

Thanks RobTheBloke for your detailed help! You pushed me in the right direction:)

 

The problem was: When I uploaded the images with glTexImage2D I had no OpenGL context. I find it very strange that glError() did not tell any error though...

 

One last question: How is it possible NOT to have a valid context? I mean after I create a context and "activate" it by calling wglMakeCurrent (), isn't the context now active forever? In other words: I thought after calling wglMakeCurrent() I can use OpenGL calls in my code in every function I want. Did I miss something?

Share this post


Link to post
Share on other sites

I think the main case where you'd be unable to use a context is due to multithreading. An OpenGL context cannot be active on multiple threads, so in the case where you wanted to call OpenGL functions from different threads, you'd need to either create more than one context and have them share data (with wglShareLists), or have each thread sync and make the context current / not current as needed. 

Share this post


Link to post
Share on other sites
Sign in to follow this  

  • Advertisement
  • Advertisement
  • Popular Now

  • Advertisement
  • Similar Content

    • By Balma Alparisi
      i got error 1282 in my code.
      sf::ContextSettings settings; settings.majorVersion = 4; settings.minorVersion = 5; settings.attributeFlags = settings.Core; sf::Window window; window.create(sf::VideoMode(1600, 900), "Texture Unit Rectangle", sf::Style::Close, settings); window.setActive(true); window.setVerticalSyncEnabled(true); glewInit(); GLuint shaderProgram = createShaderProgram("FX/Rectangle.vss", "FX/Rectangle.fss"); float vertex[] = { -0.5f,0.5f,0.0f, 0.0f,0.0f, -0.5f,-0.5f,0.0f, 0.0f,1.0f, 0.5f,0.5f,0.0f, 1.0f,0.0f, 0.5,-0.5f,0.0f, 1.0f,1.0f, }; GLuint indices[] = { 0,1,2, 1,2,3, }; GLuint vao; glGenVertexArrays(1, &vao); glBindVertexArray(vao); GLuint vbo; glGenBuffers(1, &vbo); glBindBuffer(GL_ARRAY_BUFFER, vbo); glBufferData(GL_ARRAY_BUFFER, sizeof(vertex), vertex, GL_STATIC_DRAW); GLuint ebo; glGenBuffers(1, &ebo); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ebo); glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices,GL_STATIC_DRAW); glVertexAttribPointer(0, 3, GL_FLOAT, false, sizeof(float) * 5, (void*)0); glEnableVertexAttribArray(0); glVertexAttribPointer(1, 2, GL_FLOAT, false, sizeof(float) * 5, (void*)(sizeof(float) * 3)); glEnableVertexAttribArray(1); GLuint texture[2]; glGenTextures(2, texture); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, texture[0]); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); sf::Image* imageOne = new sf::Image; bool isImageOneLoaded = imageOne->loadFromFile("Texture/container.jpg"); if (isImageOneLoaded) { glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, imageOne->getSize().x, imageOne->getSize().y, 0, GL_RGBA, GL_UNSIGNED_BYTE, imageOne->getPixelsPtr()); glGenerateMipmap(GL_TEXTURE_2D); } delete imageOne; glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, texture[1]); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); sf::Image* imageTwo = new sf::Image; bool isImageTwoLoaded = imageTwo->loadFromFile("Texture/awesomeface.png"); if (isImageTwoLoaded) { glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, imageTwo->getSize().x, imageTwo->getSize().y, 0, GL_RGBA, GL_UNSIGNED_BYTE, imageTwo->getPixelsPtr()); glGenerateMipmap(GL_TEXTURE_2D); } delete imageTwo; glUniform1i(glGetUniformLocation(shaderProgram, "inTextureOne"), 0); glUniform1i(glGetUniformLocation(shaderProgram, "inTextureTwo"), 1); GLenum error = glGetError(); std::cout << error << std::endl; sf::Event event; bool isRunning = true; while (isRunning) { while (window.pollEvent(event)) { if (event.type == event.Closed) { isRunning = false; } } glClear(GL_COLOR_BUFFER_BIT); if (isImageOneLoaded && isImageTwoLoaded) { glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, texture[0]); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, texture[1]); glUseProgram(shaderProgram); } glBindVertexArray(vao); glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, nullptr); glBindVertexArray(0); window.display(); } glDeleteVertexArrays(1, &vao); glDeleteBuffers(1, &vbo); glDeleteBuffers(1, &ebo); glDeleteProgram(shaderProgram); glDeleteTextures(2,texture); return 0; } and this is the vertex shader
      #version 450 core layout(location=0) in vec3 inPos; layout(location=1) in vec2 inTexCoord; out vec2 TexCoord; void main() { gl_Position=vec4(inPos,1.0); TexCoord=inTexCoord; } and the fragment shader
      #version 450 core in vec2 TexCoord; uniform sampler2D inTextureOne; uniform sampler2D inTextureTwo; out vec4 FragmentColor; void main() { FragmentColor=mix(texture(inTextureOne,TexCoord),texture(inTextureTwo,TexCoord),0.2); } I was expecting awesomeface.png on top of container.jpg

    • By khawk
      We've just released all of the source code for the NeHe OpenGL lessons on our Github page at https://github.com/gamedev-net/nehe-opengl. code - 43 total platforms, configurations, and languages are included.
      Now operated by GameDev.net, NeHe is located at http://nehe.gamedev.net where it has been a valuable resource for developers wanting to learn OpenGL and graphics programming.

      View full story
    • By TheChubu
      The Khronos™ Group, an open consortium of leading hardware and software companies, announces from the SIGGRAPH 2017 Conference the immediate public availability of the OpenGL® 4.6 specification. OpenGL 4.6 integrates the functionality of numerous ARB and EXT extensions created by Khronos members AMD, Intel, and NVIDIA into core, including the capability to ingest SPIR-V™ shaders.
      SPIR-V is a Khronos-defined standard intermediate language for parallel compute and graphics, which enables content creators to simplify their shader authoring and management pipelines while providing significant source shading language flexibility. OpenGL 4.6 adds support for ingesting SPIR-V shaders to the core specification, guaranteeing that SPIR-V shaders will be widely supported by OpenGL implementations.
      OpenGL 4.6 adds the functionality of these ARB extensions to OpenGL’s core specification:
      GL_ARB_gl_spirv and GL_ARB_spirv_extensions to standardize SPIR-V support for OpenGL GL_ARB_indirect_parameters and GL_ARB_shader_draw_parameters for reducing the CPU overhead associated with rendering batches of geometry GL_ARB_pipeline_statistics_query and GL_ARB_transform_feedback_overflow_querystandardize OpenGL support for features available in Direct3D GL_ARB_texture_filter_anisotropic (based on GL_EXT_texture_filter_anisotropic) brings previously IP encumbered functionality into OpenGL to improve the visual quality of textured scenes GL_ARB_polygon_offset_clamp (based on GL_EXT_polygon_offset_clamp) suppresses a common visual artifact known as a “light leak” associated with rendering shadows GL_ARB_shader_atomic_counter_ops and GL_ARB_shader_group_vote add shader intrinsics supported by all desktop vendors to improve functionality and performance GL_KHR_no_error reduces driver overhead by allowing the application to indicate that it expects error-free operation so errors need not be generated In addition to the above features being added to OpenGL 4.6, the following are being released as extensions:
      GL_KHR_parallel_shader_compile allows applications to launch multiple shader compile threads to improve shader compile throughput WGL_ARB_create_context_no_error and GXL_ARB_create_context_no_error allow no error contexts to be created with WGL or GLX that support the GL_KHR_no_error extension “I’m proud to announce OpenGL 4.6 as the most feature-rich version of OpenGL yet. We've brought together the most popular, widely-supported extensions into a new core specification to give OpenGL developers and end users an improved baseline feature set. This includes resolving previous intellectual property roadblocks to bringing anisotropic texture filtering and polygon offset clamping into the core specification to enable widespread implementation and usage,” said Piers Daniell, chair of the OpenGL Working Group at Khronos. “The OpenGL working group will continue to respond to market needs and work with GPU vendors to ensure OpenGL remains a viable and evolving graphics API for all its customers and users across many vital industries.“
      The OpenGL 4.6 specification can be found at https://khronos.org/registry/OpenGL/index_gl.php. The GLSL to SPIR-V compiler glslang has been updated with GLSL 4.60 support, and can be found at https://github.com/KhronosGroup/glslang.
      Sophisticated graphics applications will also benefit from a set of newly released extensions for both OpenGL and OpenGL ES to enable interoperability with Vulkan and Direct3D. These extensions are named:
      GL_EXT_memory_object GL_EXT_memory_object_fd GL_EXT_memory_object_win32 GL_EXT_semaphore GL_EXT_semaphore_fd GL_EXT_semaphore_win32 GL_EXT_win32_keyed_mutex They can be found at: https://khronos.org/registry/OpenGL/index_gl.php
      Industry Support for OpenGL 4.6
      “With OpenGL 4.6 our customers have an improved set of core features available on our full range of OpenGL 4.x capable GPUs. These features provide improved rendering quality, performance and functionality. As the graphics industry’s most popular API, we fully support OpenGL and will continue to work closely with the Khronos Group on the development of new OpenGL specifications and extensions for our customers. NVIDIA has released beta OpenGL 4.6 drivers today at https://developer.nvidia.com/opengl-driver so developers can use these new features right away,” said Bob Pette, vice president, Professional Graphics at NVIDIA.
      "OpenGL 4.6 will be the first OpenGL release where conformant open source implementations based on the Mesa project will be deliverable in a reasonable timeframe after release. The open sourcing of the OpenGL conformance test suite and ongoing work between Khronos and X.org will also allow for non-vendor led open source implementations to achieve conformance in the near future," said David Airlie, senior principal engineer at Red Hat, and developer on Mesa/X.org projects.

      View full story
    • By _OskaR
      Hi,
      I have an OpenGL application but without possibility to wite own shaders.
      I need to perform small VS modification - is possible to do it in an alternative way? Do we have apps or driver modifictions which will catch the shader sent to GPU and override it?
    • By xhcao
      Does sync be needed to read texture content after access texture image in compute shader?
      My simple code is as below,
      glUseProgram(program.get());
      glBindImageTexture(0, texture[0], 0, GL_FALSE, 3, GL_READ_ONLY, GL_R32UI);
      glBindImageTexture(1, texture[1], 0, GL_FALSE, 4, GL_WRITE_ONLY, GL_R32UI);
      glDispatchCompute(1, 1, 1);
      // Does sync be needed here?
      glUseProgram(0);
      glBindFramebuffer(GL_READ_FRAMEBUFFER, framebuffer);
      glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
                                     GL_TEXTURE_CUBE_MAP_POSITIVE_X + face, texture[1], 0);
      glReadPixels(0, 0, kWidth, kHeight, GL_RED_INTEGER, GL_UNSIGNED_INT, outputValues);
       
      Compute shader is very simple, imageLoad content from texture[0], and imageStore content to texture[1]. Does need to sync after dispatchCompute?
  • Advertisement