Sign in to follow this  
Migi0027

DX11 DX11 - Tessellation - Something is wrong

Recommended Posts

Hi guys!

 

I recently just started implementing tessellation for my terrain system, but it isn't quite working as I expected, nothing shows up. Further down I am going to give you some code which includes the tessellation, nothing fancy, as I said, I just got started. I don't expect you to read it all, just that if you spot something you find weird/wrong, please say so as it may help me.

 

Without implementing the tessellation, the terrain renders perfectly, but when trying to implement the tessellation, nothing is shown. PS. One interesting thing is that when rendering without tessellation, I use: D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST, but when tessellating, I understood that I had to use D3D11_PRIMITIVE_TOPOLOGY_3_CONTROL_POINT_PATCHLIST, well according to my shader file.

 

Shader (Simple):

cbuffer ConstantObjectBuffer : register (b0)
{
	matrix worldMatrix;
};

cbuffer ConstantFrameBuffer : register (b1)
{
	matrix viewMatrix;
	matrix projectionMatrix;

	float3 eyepos;
	float cppad;

	float4 lightvec;
	float4 lightcol;

	float FogStart;
	float FogEnd;
	float2 __space;

	float3 FogColor;
	float shadows;

	float SpecularIntensity;
	float3 pad3;
	float4 SpecularColor;
}


//***************************************************//
//                 VERTEX SHADER                     //
//***************************************************//

struct VOut
{
    float4 position : SV_POSITION;
	float2 texcoord : TEXCOORD;
	float access : ACCESS;
	
	float3 NormalW : NORMWORLD;
	float4 depthPosition : TEXTURE0;
};

struct GlobalIn
{
	float4 position : POSITION;
	float4 normal : NORMAL;
	float2 texcoord : TEXCOORD;
};

Texture2D t_map : register(t0);
SamplerState ss;

VOut VShader(GlobalIn input)
{
    VOut output;

    input.position.w = 1.0f;
	output.texcoord = input.texcoord;

	// Calculate the position of the vertex against the world, view, and projection matrices.
    output.position = mul(input.position, worldMatrix);
    output.position = mul(output.position, viewMatrix);
    output.position = mul(output.position, projectionMatrix);

    output.NormalW = mul(float4(input.normal.xyz,0), mul(worldMatrix, viewMatrix));

	// Store the position value in a second input value for depth value calculations.
	output.depthPosition.xyz = mul(float4(input.position.xyz,1), mul(worldMatrix, viewMatrix)).xyz;

	// Per Vertex lighting
	float4 norm = normalize(input.normal);
	output.access = saturate(dot(norm, lightvec));
	
    return output;
}

//***************************************************//
//                 HULL SHADER                       //
//***************************************************//

struct HOutput
{
    float edges[3] : SV_TessFactor;
    float inside : SV_InsideTessFactor;
};

#define tessellationAmount 12.0f

HOutput ColorPatchConstantFunction(InputPatch<VOut, 3> inputPatch, uint patchId : SV_PrimitiveID)
{    
    HOutput output;

    // Set the tessellation factors for the three edges of the triangle.
    output.edges[0] = 12.0f;
    output.edges[1] = 12.0f;
    output.edges[2] = 12.0f;

    // Set the tessellation factor for tessallating inside the triangle.
    output.inside = 12.0f;

    return output;
}

[domain("tri")]
[partitioning("integer")]
[outputtopology("triangle_cw")]
[outputcontrolpoints(3)]
[patchconstantfunc("ColorPatchConstantFunction")]

VOut HShader(InputPatch<VOut, 3> patch, uint pointId : SV_OutputControlPointID, uint patchId : SV_PrimitiveID)
{
    VOut output;

    // Set the x for this control point as the output x.
    output.position = patch[pointId].position;

    output.texcoord = patch[pointId].texcoord;
    output.access = patch[pointId].access;
    output.NormalW = patch[pointId].NormalW;
    output.depthPosition = patch[pointId].depthPosition;

    return output;
}

//***************************************************//
//                 DOMAIN SHADER                     //
//***************************************************//

[domain("tri")]

VOut DShader(HOutput input, float3 uvwCoord : SV_DomainLocation, const OutputPatch<VOut, 3> patch)
{
    float3 vertexPosition;
    VOut output;
 
    // Determine the position of the new vertex.
    vertexPosition = uvwCoord.x * patch[0].position + uvwCoord.y * patch[1].position + uvwCoord.z * patch[2].position;
    
    // Calculate the position of the new vertex against the world, view, and projection matrices.
    output.position = mul(float4(vertexPosition, 1.0f), worldMatrix);
    output.position = mul(output.position, viewMatrix);
    output.position = mul(output.position, projectionMatrix);

    // Send the input color into the pixel shader.
    output.texcoord = patch[0].texcoord;
    output.access = patch[0].access;
    output.NormalW = patch[0].NormalW;
    output.depthPosition = patch[0].depthPosition;

    return output;
}

//***************************************************//
//                 PIXEL SHADER                      //
//***************************************************//

struct POut
{
	float4 Diffuse  : SV_Target0;
	float4 Depth    : SV_Target1;
	float4 Normals  : SV_Target2;
	float4 Lighting : SV_Target3;
};

POut PShader(VOut input)
{
	POut output;

	// Depth
	output.Depth = float4(input.depthPosition.xyz, 1.0f);

	// Normals
	output.Normals = float4(normalize(input.NormalW), 1);

	output.Diffuse = float4(1, 1, 1, 1);
	output.Lighting = float4(lightcol.rgb * input.access, 1.0f);

	output.Lighting = float4(1, 1, 1, 1);

	return output;
}

C++:

 

Before Rendering:

devcon->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_3_CONTROL_POINT_PATCHLIST);

Shader Creation:

D3DX11CompileFromFile(finals.c_str(), 0, 0, "VShader", "vs_5_0", CE_DBG, 0, 0, &VS, &vserrors, &HR);
D3DX11CompileFromFile(finals.c_str(), 0, 0, "PShader", "ps_5_0", CE_DBG, 0, 0, &PS, &pserrors, &HR);
D3DX11CompileFromFile(finals.c_str(), 0, 0, "HShader", "hs_5_0", CE_DBG, 0, 0, &HS, &hserrors, &HR);
D3DX11CompileFromFile(finals.c_str(), 0, 0, "DShader", "ds_5_0", CE_DBG, 0, 0, &DS, &dserrors, &HR);

// Error Checking

dev->CreateVertexShader(VS->GetBufferPointer(), VS->GetBufferSize(), NULL, &pVS);
dev->CreatePixelShader(PS->GetBufferPointer(), PS->GetBufferSize(), NULL, &pPS);
dev->CreateHullShader(HS->GetBufferPointer(), HS->GetBufferSize(), NULL, &pHS);
dev->CreateDomainShader(DS->GetBufferPointer(), DS->GetBufferSize(), NULL, &pDS);
 
D3D11_INPUT_ELEMENT_DESC ied[] =
{
{"POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0},
{"NORMAL", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0},
{"TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0},
};
 
if (dev->CreateInputLayout(ied, 3, VS->GetBufferPointer(), VS->GetBufferSize(), &pLayout) != S_OK)
CE_WARNING("Input Layout Creation", "Input Layout creation in terrain shader has failed!");

Applying Shader:

devcon->VSSetShader(pVS, 0, 0);
devcon->HSSetShader(pHS, 0, 0);
devcon->DSSetShader(pDS, 0, 0);
devcon->PSSetShader(pPS, 0, 0);
devcon->IASetInputLayout(pLayout);

Rendering: 

// Set constant buffers

devcon->DrawIndexed(bf.IndexCount, 0, 0);

PIX:

2cqldzc.png

 

 

I hope that I have supplied you with enough information, as I haven't found the solution yet, but is still trying. happy.png

 

Thank you, as always GameDev.

Edited by Migi0027

Share this post


Link to post
Share on other sites

I know this problem because it happened to me when I first implemented tessellation! You can't use SV_Position to pass values between VS/HS and HS/DS. You can only use it for outputting from your domain shader. For other shader stages, you should use a non-SV semantic for passing position.

Share this post


Link to post
Share on other sites

So is this the correct way?:

cbuffer ConstantObjectBuffer : register (b0)
{
	matrix worldMatrix;
};

cbuffer ConstantFrameBuffer : register (b1)
{
	matrix viewMatrix;
	matrix projectionMatrix;

	float3 eyepos;
	float cppad;

	float4 lightvec;
	float4 lightcol;

	float FogStart;
	float FogEnd;
	float2 __space;

	float3 FogColor;
	float shadows;

	float SpecularIntensity;
	float3 pad3;
	float4 SpecularColor;
}


//***************************************************//
//                 VERTEX SHADER                     //
//***************************************************//

struct VOut
{
    float4 position : POSITION;
	float2 texcoord : TEXCOORD;
	float access : ACCESS;
	
	float3 NormalW : NORMWORLD;
	float4 depthPosition : TEXTURE0;
};

struct GlobalIn
{
	float4 position : POSITION;
	float4 normal : NORMAL;
	float2 texcoord : TEXCOORD;
};

Texture2D t_map : register(t0);
SamplerState ss;

VOut VShader(GlobalIn input)
{
    VOut output;

    input.position.w = 1.0f;
	output.texcoord = input.texcoord;

	// Calculate the position of the vertex against the world, view, and projection matrices.
    output.position = mul(input.position, worldMatrix);
    output.position = mul(output.position, viewMatrix);
    output.position = mul(output.position, projectionMatrix);

    output.NormalW = mul(float4(input.normal.xyz,0), mul(worldMatrix, viewMatrix));

	// Store the position value in a second input value for depth value calculations.
	output.depthPosition.xyz = mul(float4(input.position.xyz,1), mul(worldMatrix, viewMatrix)).xyz;

	// Per Vertex lighting
	float4 norm = normalize(input.normal);
	output.access = saturate(dot(norm, lightvec));
	
    return output;
}

//***************************************************//
//                 HULL SHADER                       //
//***************************************************//

struct HOutput
{
    float edges[3] : SV_TessFactor;
    float inside : SV_InsideTessFactor;
};

#define tessellationAmount 12.0f

HOutput ColorPatchConstantFunction(InputPatch<VOut, 3> inputPatch, uint patchId : SV_PrimitiveID)
{    
    HOutput output;

    // Set the tessellation factors for the three edges of the triangle.
    output.edges[0] = 12.0f;
    output.edges[1] = 12.0f;
    output.edges[2] = 12.0f;

    // Set the tessellation factor for tessallating inside the triangle.
    output.inside = 12.0f;

    return output;
}

[domain("tri")]
[partitioning("integer")]
[outputtopology("triangle_cw")]
[outputcontrolpoints(3)]
[patchconstantfunc("ColorPatchConstantFunction")]

VOut HShader(InputPatch<VOut, 3> patch, uint pointId : SV_OutputControlPointID, uint patchId : SV_PrimitiveID)
{
    VOut output;

    // Set the x for this control point as the output x.
    output.position = patch[pointId].position;

    output.texcoord = patch[pointId].texcoord;
    output.access = patch[pointId].access;
    output.NormalW = patch[pointId].NormalW;
    output.depthPosition = patch[pointId].depthPosition;

    return output;
}

//***************************************************//
//                 DOMAIN SHADER                     //
//***************************************************//

struct DOut
{
    float4 position : SV_Position;
	float2 texcoord : TEXCOORD;
	float access : ACCESS;
	
	float3 NormalW : NORMWORLD;
	float4 depthPosition : TEXTURE0;
};

[domain("tri")]

DOut DShader(HOutput input, float3 uvwCoord : SV_DomainLocation, const OutputPatch<VOut, 3> patch)
{
    float3 vertexPosition;
    DOut output;
 
    // Determine the position of the new vertex.
    vertexPosition = uvwCoord.x * patch[0].position + uvwCoord.y * patch[1].position + uvwCoord.z * patch[2].position;
    
    // Calculate the position of the new vertex against the world, view, and projection matrices.
    output.position = mul(float4(vertexPosition, 1.0f), worldMatrix);
    output.position = mul(output.position, viewMatrix);
    output.position = mul(output.position, projectionMatrix);

    // Send the input color into the pixel shader.
    output.texcoord = patch[0].texcoord;
    output.access = patch[0].access;
    output.NormalW = patch[0].NormalW;
    output.depthPosition = patch[0].depthPosition;

    return output;
}

//***************************************************//
//                 PIXEL SHADER                      //
//***************************************************//

struct POut
{
	float4 Diffuse  : SV_Target0;
	float4 Depth    : SV_Target1;
	float4 Normals  : SV_Target2;
	float4 Lighting : SV_Target3;
};

POut PShader(VOut input)
{
	POut output;

	// Depth
	output.Depth = float4(input.depthPosition.xyz, 1.0f);

	// Normals
	output.Normals = float4(normalize(input.NormalW), 1);

	output.Diffuse = float4(1, 1, 1, 1);
	output.Lighting = float4(lightcol.rgb * input.access, 1.0f);

	output.Lighting = float4(1, 1, 1, 1);

	return output;
}

Well, that fixed one issue, now the other, still can't see anything. biggrin.png

 

But thanks MJP.

Share this post


Link to post
Share on other sites
You're transforming your vertices twice, once in the vertex, once in the domain shader. You rather e.g. use a pass-through vertex shader - or transform to view or world space only. Depends on what you're doing. I recommend using view space if you later going to determine the tesselation factors according to (view) distance.

Projection transform should only happen at the last stage (before the pixel shader). In particular, sub-tesselation in clip space is probably very wrong (domain shader).

You also should interpolate the other attributes (normal, texcoord, etc.) otherwise you get wrong results.

Since PIX is quite reluctant concerning the tesselation stage you can use a pass-through geometry shader to inspect the attributes more easily.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

Sign in to follow this  

  • Announcements

  • Forum Statistics

    • Total Topics
      628294
    • Total Posts
      2981882
  • Similar Content

    • By GreenGodDiary
      I'm attempting to implement some basic post-processing in my "engine" and the HLSL part of the Compute Shader and such I think I've understood, however I'm at a loss at how to actually get/use it's output for rendering to the screen.
      Assume I'm doing something to a UAV in my CS:
      RWTexture2D<float4> InputOutputMap : register(u0); I want that texture to essentially "be" the backbuffer.
       
      I'm pretty certain I'm doing something wrong when I create the views (what I think I'm doing is having the backbuffer be bound as render target aswell as UAV and then using it in my CS):
       
      DXGI_SWAP_CHAIN_DESC scd; ZeroMemory(&scd, sizeof(DXGI_SWAP_CHAIN_DESC)); scd.BufferCount = 1; scd.BufferDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM; scd.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT | DXGI_USAGE_SHADER_INPUT | DXGI_USAGE_UNORDERED_ACCESS; scd.OutputWindow = wndHandle; scd.SampleDesc.Count = 1; scd.Windowed = TRUE; HRESULT hr = D3D11CreateDeviceAndSwapChain(NULL, D3D_DRIVER_TYPE_HARDWARE, NULL, NULL, NULL, NULL, D3D11_SDK_VERSION, &scd, &gSwapChain, &gDevice, NULL, &gDeviceContext); // get the address of the back buffer ID3D11Texture2D* pBackBuffer = nullptr; gSwapChain->GetBuffer(0, __uuidof(ID3D11Texture2D), (LPVOID*)&pBackBuffer); // use the back buffer address to create the render target gDevice->CreateRenderTargetView(pBackBuffer, NULL, &gBackbufferRTV); // set the render target as the back buffer CreateDepthStencilBuffer(); gDeviceContext->OMSetRenderTargets(1, &gBackbufferRTV, depthStencilView); //UAV for compute shader D3D11_UNORDERED_ACCESS_VIEW_DESC uavd; ZeroMemory(&uavd, sizeof(uavd)); uavd.Format = DXGI_FORMAT_R8G8B8A8_UNORM; uavd.ViewDimension = D3D11_UAV_DIMENSION_TEXTURE2D; uavd.Texture2D.MipSlice = 1; gDevice->CreateUnorderedAccessView(pBackBuffer, &uavd, &gUAV); pBackBuffer->Release();  
      After I render the scene, I dispatch like this:
      gDeviceContext->OMSetRenderTargets(0, NULL, NULL); m_vShaders["cs1"]->Bind(); gDeviceContext->CSSetUnorderedAccessViews(0, 1, &gUAV, 0); gDeviceContext->Dispatch(32, 24, 0); //hard coded ID3D11UnorderedAccessView* nullview = { nullptr }; gDeviceContext->CSSetUnorderedAccessViews(0, 1, &nullview, 0); gDeviceContext->OMSetRenderTargets(1, &gBackbufferRTV, depthStencilView); gSwapChain->Present(0, 0); Worth noting is the scene is rendered as usual, but I dont get any results from the CS (simple gaussian blur)
      I'm sure it's something fairly basic I'm doing wrong, perhaps my understanding of render targets / views / what have you is just completely wrong and my approach just makes no sense.

      If someone with more experience could point me in the right direction I would really appreciate it!

      On a side note, I'd really like to learn more about this kind of stuff. I can really see the potential of the CS aswell as rendering to textures and using them for whatever in the engine so I would love it if you know some good resources I can read about this!

      Thank you <3
       
      P.S I excluded the .hlsl since I cant imagine that being the issue, but if you think you need it to help me just ask

      P:P:S. As you can see this is my first post however I do have another account, but I can't log in with it because gamedev.net just keeps asking me to accept terms and then logs me out when I do over and over
    • By noodleBowl
      I was wondering if anyone could explain the depth buffer and the depth stencil state comparison function to me as I'm a little confused
      So I have set up a depth stencil state where the DepthFunc is set to D3D11_COMPARISON_LESS, but what am I actually comparing here? What is actually written to the buffer, the pixel that should show up in the front?
      I have these 2 quad faces, a Red Face and a Blue Face. The Blue Face is further away from the Viewer with a Z index value of -100.0f. Where the Red Face is close to the Viewer with a Z index value of 0.0f.
      When DepthFunc is set to D3D11_COMPARISON_LESS the Red Face shows up in front of the Blue Face like it should based on the Z index values. BUT if I change the DepthFunc to D3D11_COMPARISON_LESS_EQUAL the Blue Face shows in front of the Red Face. Which does not make sense to me, I would think that when the function is set to D3D11_COMPARISON_LESS_EQUAL the Red Face would still show up in front of the Blue Face as the Z index for the Red Face is still closer to the viewer
      Am I thinking of this comparison function all wrong?
      Vertex data just in case
      //Vertex date that make up the 2 faces Vertex verts[] = { //Red face Vertex(Vector4(0.0f, 0.0f, 0.0f), Color(1.0f, 0.0f, 0.0f)), Vertex(Vector4(100.0f, 100.0f, 0.0f), Color(1.0f, 0.0f, 0.0f)), Vertex(Vector4(100.0f, 0.0f, 0.0f), Color(1.0f, 0.0f, 0.0f)), Vertex(Vector4(0.0f, 0.0f, 0.0f), Color(1.0f, 0.0f, 0.0f)), Vertex(Vector4(0.0f, 100.0f, 0.0f), Color(1.0f, 0.0f, 0.0f)), Vertex(Vector4(100.0f, 100.0f, 0.0f), Color(1.0f, 0.0f, 0.0f)), //Blue face Vertex(Vector4(0.0f, 0.0f, -100.0f), Color(0.0f, 0.0f, 1.0f)), Vertex(Vector4(100.0f, 100.0f, -100.0f), Color(0.0f, 0.0f, 1.0f)), Vertex(Vector4(100.0f, 0.0f, -100.0f), Color(0.0f, 0.0f, 1.0f)), Vertex(Vector4(0.0f, 0.0f, -100.0f), Color(0.0f, 0.0f, 1.0f)), Vertex(Vector4(0.0f, 100.0f, -100.0f), Color(0.0f, 0.0f, 1.0f)), Vertex(Vector4(100.0f, 100.0f, -100.0f), Color(0.0f, 0.0f, 1.0f)), };  
    • By mellinoe
      Hi all,
      First time poster here, although I've been reading posts here for quite a while. This place has been invaluable for learning graphics programming -- thanks for a great resource!
      Right now, I'm working on a graphics abstraction layer for .NET which supports D3D11, Vulkan, and OpenGL at the moment. I have implemented most of my planned features already, and things are working well. Some remaining features that I am planning are Compute Shaders, and some flavor of read-write shader resources. At the moment, my shaders can just get simple read-only access to a uniform (or constant) buffer, a texture, or a sampler. Unfortunately, I'm having a tough time grasping the distinctions between all of the different kinds of read-write resources that are available. In D3D alone, there seem to be 5 or 6 different kinds of resources with similar but different characteristics. On top of that, I get the impression that some of them are more or less "obsoleted" by the newer kinds, and don't have much of a place in modern code. There seem to be a few pivots:
      The data source/destination (buffer or texture) Read-write or read-only Structured or unstructured (?) Ordered vs unordered (?) These are just my observations based on a lot of MSDN and OpenGL doc reading. For my library, I'm not interested in exposing every possibility to the user -- just trying to find a good "middle-ground" that can be represented cleanly across API's which is good enough for common scenarios.
      Can anyone give a sort of "overview" of the different options, and perhaps compare/contrast the concepts between Direct3D, OpenGL, and Vulkan? I'd also be very interested in hearing how other folks have abstracted these concepts in their libraries.
    • By turanszkij
      If I do a buffer update with MAP_NO_OVERWRITE or MAP_DISCARD, can I just write to the buffer after I called Unmap() on the buffer? It seems to work fine for me (Nvidia driver), but is it actually legal to do so? I have a graphics device wrapper and I don't want to expose Map/Unmap, but just have a function like void* AllocateFromRingBuffer(GPUBuffer* buffer, uint size, uint& offset); This function would just call Map on the buffer, then Unmap immediately and then return the address of the buffer. It usually does a MAP_NO_OVERWRITE, but sometimes it is a WRITE_DISCARD (when the buffer wraps around). Previously I have been using it so that the function expected the data upfront and would copy to the buffer between Map/Unmap, but now I want to extend functionality of it so that it would just return an address to write to.
    • By mister345
      Trying to write a multitexturing shader in DirectX11 - 3 textures work fine, but adding 4th gets sampled as black!
      Could you please look at the textureClass.cpp line 79? - I'm guess its D3D11_TEXTURE2D_DESC settings are wrong, 
      but no idea how to set it up right. I tried changing ArraySize from 1 to 4, but does nothing. If thats not the issue, please look
      at the LightShader_ps - maybe doing something wrong there? Otherwise, no idea.
          // Setup the description of the texture.
          textureDesc.Height = height;
          textureDesc.Width = width;
          textureDesc.MipLevels = 0;
          textureDesc.ArraySize = 1;
          textureDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM;
          textureDesc.SampleDesc.Count = 1;
          textureDesc.SampleDesc.Quality = 0;
          textureDesc.Usage = D3D11_USAGE_DEFAULT;
          textureDesc.BindFlags = D3D11_BIND_SHADER_RESOURCE | D3D11_BIND_RENDER_TARGET;
          textureDesc.CPUAccessFlags = 0;
          textureDesc.MiscFlags = D3D11_RESOURCE_MISC_GENERATE_MIPS;
      Please help, thanks.
      https://github.com/mister51213/DirectX11Engine/blob/master/DirectX11Engine/Texture.cpp
       
  • Popular Now