Sign in to follow this  
B_old

OpenGL Proper use of VAO

Recommended Posts

B_old    689

I have some experience with D3D11 but am currently looking into OpenGL.

 

I noticed that in OpenGL both the vertex buffers and the vertex layout are encapsulated together in a vertex array object.

Suppose I have a properly set up VAO and now decide that I want to use different vertex buffers that contain data in the same layout as before. At first I though I have to create a new VAO for this.

 

But then I stumbled over this quote in a text about vertex specifiation:

 

 

Better yet, if you want to use the same format but move the buffer around, it only takes one function call; namely glBindVertexBuffer? with a buffer binding of 0. [...] Note again that all of the above state is still VAO state. It is all encapsulated in vertex array objects.
regarding the usage of glVertexAttribBinding and glVertexAttribFormat. So I assume there muss be a better way.
 
My new theory on the proper usage of VAO is that I set them up with glVertexAttribFormat according to my vertex layout once and when I want switch buffers I bind the VAO but only change the glVertexAttribBinding.
Is this correct?

Share this post


Link to post
Share on other sites
LorenzoGatti    4442

Phrases like "move the buffer around" and "switch buffers" and "proper usage" are vaguer than they seem, considering that vertex array objects are an entirely optional superstructure to organize buffers and other objects: you can put into a VAO the vertex drawing state that used to be global, with a few new VAO-aware functions.

 

The quoted wiki passage means only that you can bind any VBO to the same "binding point" of a VAO, and it will be interpreted according to the VAO's layout, specified once independently of what buffers are bound. You need to call glVertexAttribBinding when you bind different buffers only if they are laid out differently after all.

 

If you want to define a vertex and vertex buffer layout once and use it with different buffer content, you it's very likely that since they have the same layout your data sets can live together in the same VBOs in, letting you use indexes to draw one or the other without binding or memory tricks.

glVertexAttribBinding

Share this post


Link to post
Share on other sites
B_old    689

Phrases like "move the buffer around" and "switch buffers" and "proper usage" are vaguer than they seem, considering that vertex array objects are an entirely optional superstructure to organize buffers and other objects: you can put into a VAO the vertex drawing state that used to be global, with a few new VAO-aware functions.

Do you mean by optional, that I don't have to use VAOs at all?

 

If you want to define a vertex and vertex buffer layout once and use it with different buffer content, you it's very likely that since they have the same layout your data sets can live together in the same VBOs in, letting you use indexes to draw one or the other without binding or memory tricks.

I was thinking about a scenario where I calculate the lighting for a model and the shader expects normals, tangents etc.. Later I calculate the the shadow where only positions are expected. If the normals and tangents reside in a separate buffer there is no need to bind it in that case.

 

I was thinking along the lines of D3D's InputLayout.

Edited by B_old

Share this post


Link to post
Share on other sites
LorenzoGatti    4442

 

If you want to define a vertex and vertex buffer layout once and use it with different buffer content, you it's very likely that since they have the same layout your data sets can live together in the same VBOs in, letting you use indexes to draw one or the other without binding or memory tricks.

I was thinking about a scenario where I calculate the lighting for a model and the shader expects normals, tangents etc.. Later I calculate the the shadow where only positions are expected. If the normals and tangents reside in a separate buffer there is no need to bind it in that case.

You might set up two vertex array objects, one for the lighting pass state and one for the shadow pass state, and two vertex buffer objects, one containing positions and one containing "normals, tangents, etc."; then you could bind the positions buffer in both vertex array objects and the other buffer in the lighting pass VAO only.

When you bind the appropriate VAO, OpenGL automatically recalls what vertex buffers are in use, and their layout.

Share this post


Link to post
Share on other sites
B_old    689

You might set up two vertex array objects, one for the lighting pass state and one for the shadow pass state, and two vertex buffer objects, one containing positions and one containing "normals, tangents, etc."; then you could bind the positions buffer in both vertex array objects and the other buffer in the lighting pass VAO only.

When you bind the appropriate VAO, OpenGL automatically recalls what vertex buffers are in use, and their layout.

That sounds complicated.

I was hoping there is a method more akin to D3D. It is easier to keep track off many vertex buffers and a few input layouts than many vertex buffers and two times (or more) that many vertex array objects.

Share this post


Link to post
Share on other sites
mhagain    13430

 


vertex array objects are an entirely optional superstructure to organize buffers

 

This is not true for core OpenGL. See for example http://www.opengl.org/wiki/GLAPI/glVertexAttribPointer which states "GL_INVALID_OPERATION? is generated if no vertex array object is bound."

 

 

At the same time, it remains semi-optional; a common tactic is to create and bind a single VAO after context creation, following which you can continue to code as before and pretend VAOs never existed.

Share this post


Link to post
Share on other sites
l0calh05t    1796

 

 


vertex array objects are an entirely optional superstructure to organize buffers

 

This is not true for core OpenGL. See for example http://www.opengl.org/wiki/GLAPI/glVertexAttribPointer which states "GL_INVALID_OPERATION? is generated if no vertex array object is bound."

 

 

At the same time, it remains semi-optional; a common tactic is to create and bind a single VAO after context creation, following which you can continue to code as before and pretend VAOs never existed.

 

I wouldn't really recommend it, but it is possible, yes. Even so you do need at least one VAO, so "entirely optional" isn't entirely true.

Share this post


Link to post
Share on other sites
B_old    689

I wouldn't really recommend it, but it is possible, yes. Even so you do need at least one VAO, so "entirely optional" isn't entirely true.

Would you say, that the proper OpenGL style is to have two VAO per model for instance? One for the lighting/g-buffer passe(s) and another for shadow passes.

 

In that case I don't understand the benefit of the 4.3 glBindVertexBuffer(), because it now seems it should still happen in a initialization phase.

Share this post


Link to post
Share on other sites
mhagain    13430

 

 

 


vertex array objects are an entirely optional superstructure to organize buffers

 

This is not true for core OpenGL. See for example http://www.opengl.org/wiki/GLAPI/glVertexAttribPointer which states "GL_INVALID_OPERATION? is generated if no vertex array object is bound."

 

 

At the same time, it remains semi-optional; a common tactic is to create and bind a single VAO after context creation, following which you can continue to code as before and pretend VAOs never existed.

 

I wouldn't really recommend it, but it is possible, yes. Even so you do need at least one VAO, so "entirely optional" isn't entirely true.

 

 

Well id do it, Valve do it, so it seems (at least on the surface) to be viable.  Despite that, I do find VAOs useful as a way to avoid having to track lots of state, but I'm still looking forward to GL_ARB_vertex_attrib_binding being more widely available.

Share this post


Link to post
Share on other sites
l0calh05t    1796

 

I wouldn't really recommend it, but it is possible, yes. Even so you do need at least one VAO, so "entirely optional" isn't entirely true.

Would you say, that the proper OpenGL style is to have two VAO per model for instance? One for the lighting/g-buffer passe(s) and another for shadow passes.

 

In that case I don't understand the benefit of the 4.3 glBindVertexBuffer(), because it now seems it should still happen in a initialization phase.

 

Why would you need two different VAOs for that? Just don't use the normal information in the shadow pass shaders. If you maintain consistent attribute locations between shaders, a single VAO per mesh should do, IMO.

Share this post


Link to post
Share on other sites
l0calh05t    1796

 

I wouldn't really recommend it, but it is possible, yes. Even so you do need at least one VAO, so "entirely optional" isn't entirely true.

 

 

Well id do it, Valve do it, so it seems (at least on the surface) to be viable.  Despite that, I do find VAOs useful as a way to avoid having to track lots of state, but I'm still looking forward to GL_ARB_vertex_attrib_binding being more widely available.

 

It is obviously doable/viable but why track all that state yourself, when the API can do it for you (which may have the side effect of being more efficient)?

Edited by l0calh05t

Share this post


Link to post
Share on other sites
B_old    689

Why would you need two different VAOs for that? Just don't use the normal information in the shadow pass shaders. If you maintain consistent attribute locations between shaders, a single VAO per mesh should do, IMO.

But wouldn't you waste bandwidth that way?

Share this post


Link to post
Share on other sites
B_old    689

Well id do it, Valve do it, so it seems (at least on the surface) to be viable.  Despite that, I do find VAOs useful as a way to avoid having to track lots of state, but I'm still looking forward to GL_ARB_vertex_attrib_binding being more widely available.

Did you get this info from this presentation about porting the source engine to OpenGL? Because I did not quite understand the part about VAOs.

Share this post


Link to post
Share on other sites
l0calh05t    1796

 

Why would you need two different VAOs for that? Just don't use the normal information in the shadow pass shaders. If you maintain consistent attribute locations between shaders, a single VAO per mesh should do, IMO.

But wouldn't you waste bandwidth that way?

 

Unlikely. As the driver knows which attributes are actually used by the shader and the shader has no reason to access that memory. Performance will not be optimal if your attributes are interleaved, but unbinding the interleaved attributes won't change that. In any case, if you need performance: profile.

Share this post


Link to post
Share on other sites
B_old    689

Unlikely. As the driver knows which attributes are actually used by the shader and the shader has no reason to access that memory. Performance will not be optimal if your attributes are interleaved, but unbinding the interleaved attributes won't change that. In any case, if you need performance: profile.

Even if the data is not accessed it still takes up bandwidth if the data is interleaved, right?

But if you only partly interleave the vertex data and partly keep it in separate streams you can potentially skip a stream thus saving bandwidth.

Share this post


Link to post
Share on other sites
mhagain    13430

 

Unlikely. As the driver knows which attributes are actually used by the shader and the shader has no reason to access that memory. Performance will not be optimal if your attributes are interleaved, but unbinding the interleaved attributes won't change that. In any case, if you need performance: profile.

Even if the data is not accessed it still takes up bandwidth if the data is interleaved, right?

But if you only partly interleave the vertex data and partly keep it in separate streams you can potentially skip a stream thus saving bandwidth.

 

 

But at the higher cost of drawing non-interleaved verts.

 

This is one that there is no "correct in every case" answer to.  One really needs to profile and find which option is best for one's own case, not forgetting to watch out for factors that you can't directly measure (i.e. bandwidth cost can be measured but the higher cost of drawing non-interleaved data is not immediately obvious).

Share this post


Link to post
Share on other sites
B_old    689

But at the higher cost of drawing non-interleaved verts.

 

This is one that there is no "correct in every case" answer to.  One really needs to profile and find which option is best for one's own case, not forgetting to watch out for factors that you can't directly measure (i.e. bandwidth cost can be measured but the higher cost of drawing non-interleaved data is not immediately obvious).

Fair enough.

Could you please elaborate more on Valve's VAO usage? Are you referring to the presentation I linked?

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

Sign in to follow this  

  • Similar Content

    • By Kjell Andersson
      I'm trying to get some legacy OpenGL code to run with a shader pipeline,
      The legacy code uses glVertexPointer(), glColorPointer(), glNormalPointer() and glTexCoordPointer() to supply the vertex information.
      I know that it should be using setVertexAttribPointer() etc to clearly define the layout but that is not an option right now since the legacy code can't be modified to that extent.
      I've got a version 330 vertex shader to somewhat work:
      #version 330 uniform mat4 osg_ModelViewProjectionMatrix; uniform mat4 osg_ModelViewMatrix; layout(location = 0) in vec4 Vertex; layout(location = 2) in vec4 Normal; // Velocity layout(location = 3) in vec3 TexCoord; // TODO: is this the right layout location? out VertexData { vec4 color; vec3 velocity; float size; } VertexOut; void main(void) { vec4 p0 = Vertex; vec4 p1 = Vertex + vec4(Normal.x, Normal.y, Normal.z, 0.0f); vec3 velocity = (osg_ModelViewProjectionMatrix * p1 - osg_ModelViewProjectionMatrix * p0).xyz; VertexOut.velocity = velocity; VertexOut.size = TexCoord.y; gl_Position = osg_ModelViewMatrix * Vertex; } What works is the Vertex and Normal information that the legacy C++ OpenGL code seem to provide in layout location 0 and 2. This is fine.
      What I'm not getting to work is the TexCoord information that is supplied by a glTexCoordPointer() call in C++.
      Question:
      What layout location is the old standard pipeline using for glTexCoordPointer()? Or is this undefined?
       
      Side note: I'm trying to get an OpenSceneGraph 3.4.0 particle system to use custom vertex, geometry and fragment shaders for rendering the particles.
    • By markshaw001
      Hi i am new to this forum  i wanted to ask for help from all of you i want to generate real time terrain using a 32 bit heightmap i am good at c++ and have started learning Opengl as i am very interested in making landscapes in opengl i have looked around the internet for help about this topic but i am not getting the hang of the concepts and what they are doing can some here suggests me some good resources for making terrain engine please for example like tutorials,books etc so that i can understand the whole concept of terrain generation.
       
    • By KarimIO
      Hey guys. I'm trying to get my application to work on my Nvidia GTX 970 desktop. It currently works on my Intel HD 3000 laptop, but on the desktop, every bind textures specifically from framebuffers, I get half a second of lag. This is done 4 times as I have three RGBA textures and one depth 32F buffer. I tried to use debugging software for the first time - RenderDoc only shows SwapBuffers() and no OGL calls, while Nvidia Nsight crashes upon execution, so neither are helpful. Without binding it runs regularly. This does not happen with non-framebuffer binds.
      GLFramebuffer::GLFramebuffer(FramebufferCreateInfo createInfo) { glGenFramebuffers(1, &fbo); glBindFramebuffer(GL_FRAMEBUFFER, fbo); textures = new GLuint[createInfo.numColorTargets]; glGenTextures(createInfo.numColorTargets, textures); GLenum *DrawBuffers = new GLenum[createInfo.numColorTargets]; for (uint32_t i = 0; i < createInfo.numColorTargets; i++) { glBindTexture(GL_TEXTURE_2D, textures[i]); GLint internalFormat; GLenum format; TranslateFormats(createInfo.colorFormats[i], format, internalFormat); // returns GL_RGBA and GL_RGBA glTexImage2D(GL_TEXTURE_2D, 0, internalFormat, createInfo.width, createInfo.height, 0, format, GL_FLOAT, 0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); DrawBuffers[i] = GL_COLOR_ATTACHMENT0 + i; glBindTexture(GL_TEXTURE_2D, 0); glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + i, textures[i], 0); } if (createInfo.depthFormat != FORMAT_DEPTH_NONE) { GLenum depthFormat; switch (createInfo.depthFormat) { case FORMAT_DEPTH_16: depthFormat = GL_DEPTH_COMPONENT16; break; case FORMAT_DEPTH_24: depthFormat = GL_DEPTH_COMPONENT24; break; case FORMAT_DEPTH_32: depthFormat = GL_DEPTH_COMPONENT32; break; case FORMAT_DEPTH_24_STENCIL_8: depthFormat = GL_DEPTH24_STENCIL8; break; case FORMAT_DEPTH_32_STENCIL_8: depthFormat = GL_DEPTH32F_STENCIL8; break; } glGenTextures(1, &depthrenderbuffer); glBindTexture(GL_TEXTURE_2D, depthrenderbuffer); glTexImage2D(GL_TEXTURE_2D, 0, depthFormat, createInfo.width, createInfo.height, 0, GL_DEPTH_COMPONENT, GL_FLOAT, 0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glBindTexture(GL_TEXTURE_2D, 0); glFramebufferTexture(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, depthrenderbuffer, 0); } if (createInfo.numColorTargets > 0) glDrawBuffers(createInfo.numColorTargets, DrawBuffers); else glDrawBuffer(GL_NONE); if (glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE) std::cout << "Framebuffer Incomplete\n"; glBindFramebuffer(GL_FRAMEBUFFER, 0); width = createInfo.width; height = createInfo.height; } // ... // FBO Creation FramebufferCreateInfo gbufferCI; gbufferCI.colorFormats = gbufferCFs.data(); gbufferCI.depthFormat = FORMAT_DEPTH_32; gbufferCI.numColorTargets = gbufferCFs.size(); gbufferCI.width = engine.settings.resolutionX; gbufferCI.height = engine.settings.resolutionY; gbufferCI.renderPass = nullptr; gbuffer = graphicsWrapper->CreateFramebuffer(gbufferCI); // Bind glBindFramebuffer(GL_DRAW_FRAMEBUFFER, fbo); // Draw here... // Bind to textures glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, textures[0]); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, textures[1]); glActiveTexture(GL_TEXTURE2); glBindTexture(GL_TEXTURE_2D, textures[2]); glActiveTexture(GL_TEXTURE3); glBindTexture(GL_TEXTURE_2D, depthrenderbuffer); Here is an extract of my code. I can't think of anything else to include. I've really been butting my head into a wall trying to think of a reason but I can think of none and all my research yields nothing. Thanks in advance!
    • By Adrianensis
      Hi everyone, I've shared my 2D Game Engine source code. It's the result of 4 years working on it (and I still continue improving features ) and I want to share with the community. You can see some videos on youtube and some demo gifs on my twitter account.
      This Engine has been developed as End-of-Degree Project and it is coded in Javascript, WebGL and GLSL. The engine is written from scratch.
      This is not a professional engine but it's for learning purposes, so anyone can review the code an learn basis about graphics, physics or game engine architecture. Source code on this GitHub repository.
      I'm available for a good conversation about Game Engine / Graphics Programming
    • By C0dR
      I would like to introduce the first version of my physically based camera rendering library, written in C++, called PhysiCam.
      Physicam is an open source OpenGL C++ library, which provides physically based camera rendering and parameters. It is based on OpenGL and designed to be used as either static library or dynamic library and can be integrated in existing applications.
       
      The following features are implemented:
      Physically based sensor and focal length calculation Autoexposure Manual exposure Lense distortion Bloom (influenced by ISO, Shutter Speed, Sensor type etc.) Bokeh (influenced by Aperture, Sensor type and focal length) Tonemapping  
      You can find the repository at https://github.com/0x2A/physicam
       
      I would be happy about feedback, suggestions or contributions.

  • Popular Now