• Announcements

    • khawk

      Download the Game Design and Indie Game Marketing Freebook   07/19/17

      GameDev.net and CRC Press have teamed up to bring a free ebook of content curated from top titles published by CRC Press. The freebook, Practices of Game Design & Indie Game Marketing, includes chapters from The Art of Game Design: A Book of Lenses, A Practical Guide to Indie Game Marketing, and An Architectural Approach to Level Design. The GameDev.net FreeBook is relevant to game designers, developers, and those interested in learning more about the challenges in game development. We know game development can be a tough discipline and business, so we picked several chapters from CRC Press titles that we thought would be of interest to you, the GameDev.net audience, in your journey to design, develop, and market your next game. The free ebook is available through CRC Press by clicking here. The Curated Books The Art of Game Design: A Book of Lenses, Second Edition, by Jesse Schell Presents 100+ sets of questions, or different lenses, for viewing a game’s design, encompassing diverse fields such as psychology, architecture, music, film, software engineering, theme park design, mathematics, anthropology, and more. Written by one of the world's top game designers, this book describes the deepest and most fundamental principles of game design, demonstrating how tactics used in board, card, and athletic games also work in video games. It provides practical instruction on creating world-class games that will be played again and again. View it here. A Practical Guide to Indie Game Marketing, by Joel Dreskin Marketing is an essential but too frequently overlooked or minimized component of the release plan for indie games. A Practical Guide to Indie Game Marketing provides you with the tools needed to build visibility and sell your indie games. With special focus on those developers with small budgets and limited staff and resources, this book is packed with tangible recommendations and techniques that you can put to use immediately. As a seasoned professional of the indie game arena, author Joel Dreskin gives you insight into practical, real-world experiences of marketing numerous successful games and also provides stories of the failures. View it here. An Architectural Approach to Level Design This is one of the first books to integrate architectural and spatial design theory with the field of level design. The book presents architectural techniques and theories for level designers to use in their own work. It connects architecture and level design in different ways that address the practical elements of how designers construct space and the experiential elements of how and why humans interact with this space. Throughout the text, readers learn skills for spatial layout, evoking emotion through gamespaces, and creating better levels through architectural theory. View it here. Learn more and download the ebook by clicking here. Did you know? GameDev.net and CRC Press also recently teamed up to bring GDNet+ Members up to a 20% discount on all CRC Press books. Learn more about this and other benefits here.
Sign in to follow this  
Followers 0
Syerjchep

OpenGL
Fixing shaders for lighting terrain.

1 post in this topic

I've been making a new opengl program which uses shaders and the shaders support up to 8 dynamic lights.
This worked fine when I was just loading models and testing them.
But now that I've added some terrain the light acts very odd with it.

farAwayHillside.png
The further away from the light I go, the more you can actually see it.

closeUpHillside.png
If you get within a reasonable distance, however, the lights vanish.

litPlants.png
This bug does not seem to effect the models very much.

Here is my fragment shader:

#version 330 core

// Interpolated values from the vertex shaders
in vec2 UV;
in vec3 Position_worldspace;
in vec3 Normal_cameraspace;
in vec3 EyeDirection_cameraspace;
in vec3 ambientColor;
in vec3 diffuseColor;
in vec3 specularColor;

in vec3 Light0Direction_cameraspace;
in vec3 Light1Direction_cameraspace;
in vec3 Light2Direction_cameraspace;
in vec3 Light3Direction_cameraspace;
in vec3 Light4Direction_cameraspace;
in vec3 Light5Direction_cameraspace;
in vec3 Light6Direction_cameraspace;
in vec3 Light7Direction_cameraspace;

// Ouput data
out vec3 color;

// Values that stay constant for the whole mesh.
uniform sampler2D myTextureSampler;
uniform mat4 MV;
uniform int textured;
uniform int terrain;
uniform vec3 worldAmbient;

uniform vec3 Light0_Position;
uniform vec3 Light1_Position;
uniform vec3 Light2_Position;
uniform vec3 Light3_Position;
uniform vec3 Light4_Position;
uniform vec3 Light5_Position;
uniform vec3 Light6_Position;
uniform vec3 Light7_Position;

uniform vec3 Light0_Color;
uniform vec3 Light1_Color;
uniform vec3 Light2_Color;
uniform vec3 Light3_Color;
uniform vec3 Light4_Color;
uniform vec3 Light5_Color;
uniform vec3 Light6_Color;
uniform vec3 Light7_Color;

uniform float Light0_Power;
uniform float Light1_Power;
uniform float Light2_Power;
uniform float Light3_Power;
uniform float Light4_Power;
uniform float Light5_Power;
uniform float Light6_Power;
uniform float Light7_Power;

void main()
{
	// Material properties
	vec3 MaterialDiffuseColor = diffuseColor;
	vec3 MaterialAmbientColor = ambientColor;
	vec3 MaterialSpecularColor = specularColor;

	if(terrain == 1)
	{
		MaterialAmbientColor = texture2D( myTextureSampler, UV ).rgb * worldAmbient;
		MaterialDiffuseColor = MaterialAmbientColor;
		MaterialSpecularColor = vec3(0,0,0);
	}
	else
	{

	if(textured == 1)
	{
		MaterialAmbientColor = texture2D( myTextureSampler, UV ).rgb * worldAmbient;
		MaterialDiffuseColor = diffuseColor * texture2D( myTextureSampler, UV ).rgb;
		MaterialSpecularColor = specularColor;
	}
	else
	{
		//blender wasn't exporting ambient colors, so we're using diffuse for now
		MaterialAmbientColor = MaterialDiffuseColor * worldAmbient;
	}

	}

	float distance0 = length( Light0_Position - Position_worldspace );
	float distance1 = length( Light1_Position - Position_worldspace );
	float distance2 = length( Light2_Position - Position_worldspace );
	float distance3 = length( Light3_Position - Position_worldspace );
	float distance4 = length( Light4_Position - Position_worldspace );
	float distance5 = length( Light5_Position - Position_worldspace );
	float distance6 = length( Light6_Position - Position_worldspace );
	float distance7 = length( Light7_Position - Position_worldspace );

	vec3 n = normalize( Normal_cameraspace );
	vec3 E = normalize(EyeDirection_cameraspace);

	vec3 l0 = normalize( Light0Direction_cameraspace );
	float cosTheta0 = clamp( dot( n,l0 ), 0,1 );

	vec3 l1 = normalize( Light1Direction_cameraspace );
	float cosTheta1 = clamp( dot( n,l1 ), 0,1 );

	vec3 l2 = normalize( Light2Direction_cameraspace );
	float cosTheta2 = clamp( dot( n,l2 ), 0,1 );

	vec3 l3 = normalize( Light3Direction_cameraspace );
	float cosTheta3 = clamp( dot( n,l3 ), 0,1 );

	vec3 l4 = normalize( Light4Direction_cameraspace );
	float cosTheta4 = clamp( dot( n,l4 ), 0,1 );

	vec3 l5 = normalize( Light5Direction_cameraspace );
	float cosTheta5 = clamp( dot( n,l5 ), 0,1 );

	vec3 l6 = normalize( Light6Direction_cameraspace );
	float cosTheta6 = clamp( dot( n,l6 ), 0,1 );

	vec3 l7 = normalize( Light7Direction_cameraspace );
	float cosTheta7 = clamp( dot( n,l7 ), 0,1 );

	vec3 R0 = reflect(-l0,n);
	float cosAlpha0 = clamp( dot( E,R0 ), 0,1 );

	vec3 R1 = reflect(-l1,n);
	float cosAlpha1 = clamp( dot( E,R1 ), 0,1 );

	vec3 R2 = reflect(-l2,n);
	float cosAlpha2 = clamp( dot( E,R2 ), 0,1 );

	vec3 R3 = reflect(-l3,n);
	float cosAlpha3 = clamp( dot( E,R3 ), 0,1 );

	vec3 R4 = reflect(-l4,n);
	float cosAlpha4 = clamp( dot( E,R4 ), 0,1 );

	vec3 R5 = reflect(-l5,n);
	float cosAlpha5 = clamp( dot( E,R5 ), 0,1 );

	vec3 R6 = reflect(-l6,n);
	float cosAlpha6 = clamp( dot( E,R6 ), 0,1 );

	vec3 R7 = reflect(-l7,n);
	float cosAlpha7 = clamp( dot( E,R7 ), 0,1 );

	vec3 colorPower0 = Light0_Color * Light0_Power;
	vec3 colorPower1 = Light1_Color * Light1_Power;
	vec3 colorPower2 = Light2_Color * Light2_Power;
	vec3 colorPower3 = Light3_Color * Light3_Power;
	vec3 colorPower4 = Light4_Color * Light4_Power;
	vec3 colorPower5 = Light5_Color * Light5_Power;
	vec3 colorPower6 = Light6_Color * Light6_Power;
	vec3 colorPower7 = Light7_Color * Light7_Power;

	vec3 MaterialDiffuseColor0 = colorPower0 * cosTheta0 / (distance0*distance0);
	vec3 MaterialSpecularColor0 = Light0_Color * Light0_Power * pow(cosAlpha0,5) / (distance0*distance0);

	vec3 MaterialDiffuseColor1 = colorPower1 * cosTheta1 / (distance1*distance1);
	vec3 MaterialSpecularColor1 = Light1_Color * Light1_Power * pow(cosAlpha1,5) / (distance1*distance1);

	vec3 MaterialDiffuseColor2 = colorPower2 * cosTheta2 / (distance2*distance2);
	vec3 MaterialSpecularColor2 = Light2_Color * Light2_Power * pow(cosAlpha2,5) / (distance2*distance2);

	vec3 MaterialDiffuseColor3 = colorPower3 * cosTheta3 / (distance3*distance3);
	vec3 MaterialSpecularColor3 = Light3_Color * Light3_Power * pow(cosAlpha3,5) / (distance3*distance3);

	vec3 MaterialDiffuseColor4 = colorPower4 * cosTheta4 / (distance4*distance4);
	vec3 MaterialSpecularColor4 = Light4_Color * Light4_Power * pow(cosAlpha4,5) / (distance4*distance4);

	vec3 MaterialDiffuseColor5 = colorPower5 * cosTheta5 / (distance5*distance5);
	vec3 MaterialSpecularColor5 = Light5_Color * Light5_Power * pow(cosAlpha5,5) / (distance5*distance5);

	vec3 MaterialDiffuseColor6 = colorPower6 * cosTheta6 / (distance6*distance6);
	vec3 MaterialSpecularColor6 = Light6_Color * Light6_Power * pow(cosAlpha6,5) / (distance6*distance6);

	vec3 MaterialDiffuseColor7 = colorPower7 * cosTheta7 / (distance7*distance7);
	vec3 MaterialSpecularColor7 = Light7_Color * Light7_Power * pow(cosAlpha7,5) / (distance7*distance7);
	
	color = MaterialAmbientColor;

	color += (MaterialDiffuseColor * MaterialDiffuseColor0) + (MaterialSpecularColor * MaterialSpecularColor0);
	color += (MaterialDiffuseColor * MaterialDiffuseColor1) + (MaterialSpecularColor * MaterialSpecularColor1);
	color += (MaterialDiffuseColor * MaterialDiffuseColor2) + (MaterialSpecularColor * MaterialSpecularColor2);
	color += (MaterialDiffuseColor * MaterialDiffuseColor3) + (MaterialSpecularColor * MaterialSpecularColor3);
	color += (MaterialDiffuseColor * MaterialDiffuseColor4) + (MaterialSpecularColor * MaterialSpecularColor4);
	color += (MaterialDiffuseColor * MaterialDiffuseColor5) + (MaterialSpecularColor * MaterialSpecularColor5);
	color += (MaterialDiffuseColor * MaterialDiffuseColor6) + (MaterialSpecularColor * MaterialSpecularColor6);
	color += (MaterialDiffuseColor * MaterialDiffuseColor7) + (MaterialSpecularColor * MaterialSpecularColor7);
}

My vertex shader:

#version 330 core

// Input vertex data, different for all executions of this shader.
layout(location = 0) in vec3 vertexPosition_modelspace;
layout(location = 1) in vec2 vertexUV;
layout(location = 2) in vec3 vertexNormal_modelspace;
layout(location = 3) in vec3 vertexAmbientColor;
layout(location = 4) in vec3 vertexDiffuseColor;
layout(location = 5) in vec3 vertexSpecularColor;

// Output data ; will be interpolated for each fragment.
out vec2 UV;
out vec3 Position_worldspace;
out vec3 Normal_cameraspace;
out vec3 EyeDirection_cameraspace;
out vec3 ambientColor;
out vec3 diffuseColor;
out vec3 specularColor;

out vec3 Light0Direction_cameraspace;
out vec3 Light1Direction_cameraspace;
out vec3 Light2Direction_cameraspace;
out vec3 Light3Direction_cameraspace;
out vec3 Light4Direction_cameraspace;
out vec3 Light5Direction_cameraspace;
out vec3 Light6Direction_cameraspace;
out vec3 Light7Direction_cameraspace;

// Values that stay constant for the whole mesh.
uniform mat4 MVP;
uniform mat4 V;
uniform mat4 M;

uniform vec3 Light0_Position;
uniform vec3 Light1_Position;
uniform vec3 Light2_Position;
uniform vec3 Light3_Position;
uniform vec3 Light4_Position;
uniform vec3 Light5_Position;
uniform vec3 Light6_Position;
uniform vec3 Light7_Position;

void main()
{
	// Output position of the vertex, in clip space : MVP * position
	gl_Position =  MVP * vec4(vertexPosition_modelspace,1);
	
	// Position of the vertex, in worldspace : M * position
	Position_worldspace = (M * vec4(vertexPosition_modelspace,1)).xyz;
	
	// Vector that goes from the vertex to the camera, in camera space.
	// In camera space, the camera is at the origin (0,0,0).
	vec3 vertexPosition_cameraspace = ( V * M * vec4(vertexPosition_modelspace,1)).xyz;
	EyeDirection_cameraspace = vec3(0,0,0) - vertexPosition_cameraspace;

	// Vector that goes from the vertex to the light, in camera space. M is ommited because it's identity.
	
	vec3 Light0Position_cameraspace = ( V * vec4(Light0_Position,0)).xyz;
	Light0Direction_cameraspace = Light0Position_cameraspace + EyeDirection_cameraspace;
	vec3 Light1Position_cameraspace = ( V * vec4(Light1_Position,0)).xyz;
	Light1Direction_cameraspace = Light1Position_cameraspace + EyeDirection_cameraspace;
	vec3 Light2Position_cameraspace = ( V * vec4(Light2_Position,0)).xyz;
	Light2Direction_cameraspace = Light2Position_cameraspace + EyeDirection_cameraspace;
	vec3 Light3Position_cameraspace = ( V * vec4(Light3_Position,0)).xyz;
	Light3Direction_cameraspace = Light3Position_cameraspace + EyeDirection_cameraspace;
	vec3 Light4Position_cameraspace = ( V * vec4(Light4_Position,0)).xyz;
	Light4Direction_cameraspace = Light4Position_cameraspace + EyeDirection_cameraspace;
	vec3 Light5Position_cameraspace = ( V * vec4(Light5_Position,0)).xyz;
	Light5Direction_cameraspace = Light5Position_cameraspace + EyeDirection_cameraspace;
	vec3 Light6Position_cameraspace = ( V * vec4(Light6_Position,0)).xyz;
	Light6Direction_cameraspace = Light6Position_cameraspace + EyeDirection_cameraspace;
	vec3 Light7Position_cameraspace = ( V * vec4(Light7_Position,0)).xyz;
	Light7Direction_cameraspace = Light7Position_cameraspace + EyeDirection_cameraspace;
	
	// Normal of the the vertex, in camera space
	Normal_cameraspace = ( V * M * vec4(vertexNormal_modelspace,0)).xyz; // Only correct if ModelMatrix does not scale the model ! Use its inverse transpose if not.
	
	// UV of the vertex. No special space for this one.
	UV = vertexUV;
	diffuseColor = vertexDiffuseColor;
	ambientColor = vertexAmbientColor;
	specularColor = vertexSpecularColor;
}

And some code from the program itself:

int heightMap[200][200];
GLuint terrainVAO;
GLuint terrainTexture;
GLuint terrainVertBuffer;
GLuint terrainNormalBuffer;
GLuint terrainUVBuffer;
GLuint terrainDiffBuffer;
GLuint terrainSpecBuffer;
vector<glm::vec3> terrainVerts;
vector<glm::vec2> terrainUVs;
vector<glm::vec3> terrainNormals;
vector<glm::vec3> terrainSpecs;
vector<glm::vec3> terrainDiffs;

struct tmpVec3
{
    float x,y,z;
};

tmpVec3 cross(float x1,float y1,float z1,float x2,float y2,float z2)
{
    tmpVec3 ret;
    ret.x = (y1*z2) - (z1*y2);
    ret.y = (z1*x2) - (x1*z2);
    ret.z = (x1*y2) - (y1*x2);
    return ret;
}

tmpVec3 normalize(tmpVec3 in)
{
    float length;
    length = sqrt(pow(in.x,2)+pow(in.y,2)+pow(in.z,2));
    in.x /= length;
    in.y /= length;
    in.z /= length;
    return in;
}

void recompileHeightmap()
{
    terrainVerts.empty();
    terrainUVs.empty();
    terrainNormals.empty();

    for(int x = 0; x<199; x++)
    {
        for(int z = 0; z<199; z++)
        {

            glm::vec3 temp1(-(x),heightMap[x][z],-(z));
            glm::vec3 temp2(-(x),heightMap[x][z+1],-(z+1));
            glm::vec3 temp3(-(x+1),heightMap[x+1][z],-(z));

            glm::vec3 temp4(-(x+1),heightMap[x+1][z+1],-(z+1));
            glm::vec3 temp5(-(x+1),heightMap[x+1][z],-(z));
            glm::vec3 temp6(-(x),heightMap[x][z+1],-(z+1));

            terrainVerts.push_back(temp1);
            terrainVerts.push_back(temp2);
            terrainVerts.push_back(temp3);
            terrainVerts.push_back(temp4);
            terrainVerts.push_back(temp5);
            terrainVerts.push_back(temp6);

            glm::vec3 tempDiff(1,1,1);
            glm::vec3 tempSpec(0,0,0);

            terrainDiffs.push_back(tempDiff);
            terrainDiffs.push_back(tempDiff);
            terrainDiffs.push_back(tempDiff);
            terrainDiffs.push_back(tempDiff);
            terrainDiffs.push_back(tempDiff);
            terrainDiffs.push_back(tempDiff);

            terrainSpecs.push_back(tempSpec);
            terrainSpecs.push_back(tempSpec);
            terrainSpecs.push_back(tempSpec);
            terrainSpecs.push_back(tempSpec);
            terrainSpecs.push_back(tempSpec);
            terrainSpecs.push_back(tempSpec);

            int randNum = rand() % 4;

            if(randNum == 0)
            {
                glm::vec2 uv1(0,0);
                glm::vec2 uv2(0,1);
                glm::vec2 uv3(1,0);

                glm::vec2 uv4(1,1);
                glm::vec2 uv5(1,0);
                glm::vec2 uv6(0,1);

                terrainUVs.push_back(uv1);
                terrainUVs.push_back(uv2);
                terrainUVs.push_back(uv3);
                terrainUVs.push_back(uv4);
                terrainUVs.push_back(uv5);
                terrainUVs.push_back(uv6);
            }
            else if(randNum == 1)
            {
                glm::vec2 uv1(1,1);
                glm::vec2 uv2(1,0);
                glm::vec2 uv3(0,1);

                glm::vec2 uv4(1,1);
                glm::vec2 uv5(1,0);
                glm::vec2 uv6(0,1);

                terrainUVs.push_back(uv1);
                terrainUVs.push_back(uv2);
                terrainUVs.push_back(uv3);
                terrainUVs.push_back(uv4);
                terrainUVs.push_back(uv5);
                terrainUVs.push_back(uv6);
            }
            else if(randNum == 2)
            {
                glm::vec2 uv1(0,0);
                glm::vec2 uv2(0,1);
                glm::vec2 uv3(1,0);

                glm::vec2 uv4(1,0);
                glm::vec2 uv5(0,1);
                glm::vec2 uv6(1,1);

                terrainUVs.push_back(uv1);
                terrainUVs.push_back(uv2);
                terrainUVs.push_back(uv3);
                terrainUVs.push_back(uv4);
                terrainUVs.push_back(uv5);
                terrainUVs.push_back(uv6);
            }
            else
            {
                glm::vec2 uv1(1,1);
                glm::vec2 uv2(1,0);
                glm::vec2 uv3(0,1);

                glm::vec2 uv4(1,1);
                glm::vec2 uv5(1,0);
                glm::vec2 uv6(0,1);

                terrainUVs.push_back(uv1);
                terrainUVs.push_back(uv2);
                terrainUVs.push_back(uv3);
                terrainUVs.push_back(uv4);
                terrainUVs.push_back(uv5);
                terrainUVs.push_back(uv6);
            }
        }
    }

    for(int i = 0; i<terrainVerts.size(); i+=3)
    {
        glm::vec3 first = terrainVerts[i];
        glm::vec3 second = terrainVerts[i+1];
        glm::vec3 third = terrainVerts[i+2];

        float v1x = second.x - first.x;
        float v1y = second.y - first.y;
        float v1z = second.z - first.z;
        float v2x = third.x - first.x;
        float v2y = third.y - first.y;
        float v2z = third.z - first.z;

        tmpVec3 ret = normalize(cross(v1x,v1y,v1z,v2x,v2y,v2z));

        glm::vec3 normal(-ret.x,ret.y,-ret.z);

        terrainNormals.push_back(normal);
        terrainNormals.push_back(normal);
        terrainNormals.push_back(normal);
    }

    glGenVertexArrays(1,&terrainVAO);
    glBindVertexArray(terrainVAO);

    glBindTexture(GL_TEXTURE_2D, terrainTexture);

    glGenBuffers(1, &terrainVertBuffer);
    glEnableVertexAttribArray(0);
    glBindBuffer(GL_ARRAY_BUFFER, terrainVertBuffer);
    glBufferData(GL_ARRAY_BUFFER, terrainVerts.size() * sizeof(glm::vec3), &terrainVerts[0], GL_STATIC_DRAW);
    glVertexAttribPointer(
            0,                  // attribute
            3,                  // size
            GL_FLOAT,           // type
            GL_FALSE,           // normalized?
            0,                  // stride
            (void*)0            // array buffer offset
    );

    glGenBuffers(1, &terrainUVBuffer);
    glEnableVertexAttribArray(1);
    glBindBuffer(GL_ARRAY_BUFFER, terrainUVBuffer);
    glBufferData(GL_ARRAY_BUFFER, terrainUVs.size() * sizeof(glm::vec2), &terrainUVs[0], GL_STATIC_DRAW);
    glVertexAttribPointer(
            1,                  // attribute
            2,                  // size
            GL_FLOAT,           // type
            GL_FALSE,           // normalized?
            0,                  // stride
            (void*)0            // array buffer offset
    );

    glGenBuffers(1, &terrainNormalBuffer);
    glEnableVertexAttribArray(2);
    glBindBuffer(GL_ARRAY_BUFFER, terrainNormalBuffer);
    glBufferData(GL_ARRAY_BUFFER, terrainNormals.size() * sizeof(glm::vec3), &terrainNormals[0], GL_STATIC_DRAW);
    glVertexAttribPointer(
            2,                                // attribute
            3,                                // size
            GL_FLOAT,                         // type
            GL_FALSE,                         // normalized?
            0,                                // stride
            (void*)0                          // array buffer offset
    );

        glGenBuffers(1, &terrainDiffBuffer);
        glEnableVertexAttribArray(4);
        glBindBuffer(GL_ARRAY_BUFFER, terrainDiffBuffer);
        glBufferData(GL_ARRAY_BUFFER, terrainDiffs.size() * sizeof(glm::vec3), &terrainDiffs[0], GL_STATIC_DRAW);
        glVertexAttribPointer(
                4,                                // attribute
                3,                                // size
                GL_FLOAT,                         // type
                GL_FALSE,                         // normalized?
                0,                                // stride
                (void*)0                          // array buffer offset
        );

        glGenBuffers(1, &terrainSpecBuffer);
        glEnableVertexAttribArray(5);
        glBindBuffer(GL_ARRAY_BUFFER, terrainSpecBuffer);
        glBufferData(GL_ARRAY_BUFFER, terrainSpecs.size() * sizeof(glm::vec3), &terrainSpecs[0], GL_STATIC_DRAW);
        glVertexAttribPointer(
                5,                                // attribute
                3,                                // size
                GL_FLOAT,                         // type
                GL_FALSE,                         // normalized?
                0,                                // stride
                (void*)0                          // array buffer offset
        );
}

Called each frame:

        glBindTexture(GL_TEXTURE_2D, terrainTexture);
        glBindVertexArray(terrainVAO);
        glDrawArrays(GL_TRIANGLES, 0, terrainVerts.size() );

I may not have provided enough information, however if there are any improvements at all that anyone can suggest, I'd love to hear them before I start devloping anything more advanced.
 

 

[media]http://www.youtube.com/watch?v=osi8v5TP-bk&feature=youtu.be[/media]

Edited by Syerjchep
0

Share this post


Link to post
Share on other sites
It somehow looks like your point light on the corner where your terrain goes up, moves with the camera. But that might be just visual / misleading.

Another thing you could test is moving that specific light source to eather the steaper or the flat mesh, and see what the result is. If is is correct, then you have to look somewhere where the lighting affects more then one (big) mesh, in this case the terrain.
0

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!


Register a new account

Sign in

Already have an account? Sign in here.


Sign In Now
Sign in to follow this  
Followers 0

  • Similar Content

    • By DaniDesu
      #include "MyEngine.h" int main() { MyEngine myEngine; myEngine.run(); return 0; } MyEngine.h
      #pragma once #include "MyWindow.h" #include "MyShaders.h" #include "MyShapes.h" class MyEngine { private: GLFWwindow * myWindowHandle; MyWindow * myWindow; public: MyEngine(); ~MyEngine(); void run(); }; MyEngine.cpp
      #include "MyEngine.h" MyEngine::MyEngine() { MyWindow myWindow(800, 600, "My Game Engine"); this->myWindow = &myWindow; myWindow.createWindow(); this->myWindowHandle = myWindow.getWindowHandle(); // Load all OpenGL function pointers for use gladLoadGLLoader((GLADloadproc)glfwGetProcAddress); } MyEngine::~MyEngine() { this->myWindow->destroyWindow(); } void MyEngine::run() { MyShaders myShaders("VertexShader.glsl", "FragmentShader.glsl"); MyShapes myShapes; GLuint vertexArrayObjectHandle; float coordinates[] = { 0.5f, 0.5f, 0.0f, 0.5f, -0.5f, 0.0f, -0.5f, 0.5f, 0.0f }; vertexArrayObjectHandle = myShapes.drawTriangle(coordinates); while (!glfwWindowShouldClose(this->myWindowHandle)) { glClearColor(0.5f, 0.5f, 0.5f, 1.0f); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Draw something glUseProgram(myShaders.getShaderProgram()); glBindVertexArray(vertexArrayObjectHandle); glDrawArrays(GL_TRIANGLES, 0, 3); glfwSwapBuffers(this->myWindowHandle); glfwPollEvents(); } } MyShaders.h
      #pragma once #include <glad\glad.h> #include <GLFW\glfw3.h> #include "MyFileHandler.h" class MyShaders { private: const char * vertexShaderFileName; const char * fragmentShaderFileName; const char * vertexShaderCode; const char * fragmentShaderCode; GLuint vertexShaderHandle; GLuint fragmentShaderHandle; GLuint shaderProgram; void compileShaders(); public: MyShaders(const char * vertexShaderFileName, const char * fragmentShaderFileName); ~MyShaders(); GLuint getShaderProgram(); const char * getVertexShaderCode(); const char * getFragmentShaderCode(); }; MyShaders.cpp
      #include "MyShaders.h" MyShaders::MyShaders(const char * vertexShaderFileName, const char * fragmentShaderFileName) { this->vertexShaderFileName = vertexShaderFileName; this->fragmentShaderFileName = fragmentShaderFileName; // Load shaders from files MyFileHandler myVertexShaderFileHandler(this->vertexShaderFileName); this->vertexShaderCode = myVertexShaderFileHandler.readFile(); MyFileHandler myFragmentShaderFileHandler(this->fragmentShaderFileName); this->fragmentShaderCode = myFragmentShaderFileHandler.readFile(); // Compile shaders this->compileShaders(); } MyShaders::~MyShaders() { } void MyShaders::compileShaders() { this->vertexShaderHandle = glCreateShader(GL_VERTEX_SHADER); this->fragmentShaderHandle = glCreateShader(GL_FRAGMENT_SHADER); glShaderSource(this->vertexShaderHandle, 1, &(this->vertexShaderCode), NULL); glShaderSource(this->fragmentShaderHandle, 1, &(this->fragmentShaderCode), NULL); glCompileShader(this->vertexShaderHandle); glCompileShader(this->fragmentShaderHandle); this->shaderProgram = glCreateProgram(); glAttachShader(this->shaderProgram, this->vertexShaderHandle); glAttachShader(this->shaderProgram, this->fragmentShaderHandle); glLinkProgram(this->shaderProgram); return; } GLuint MyShaders::getShaderProgram() { return this->shaderProgram; } const char * MyShaders::getVertexShaderCode() { return this->vertexShaderCode; } const char * MyShaders::getFragmentShaderCode() { return this->fragmentShaderCode; } MyWindow.h
      #pragma once #include <glad\glad.h> #include <GLFW\glfw3.h> class MyWindow { private: GLFWwindow * windowHandle; int windowWidth; int windowHeight; const char * windowTitle; public: MyWindow(int windowWidth, int windowHeight, const char * windowTitle); ~MyWindow(); GLFWwindow * getWindowHandle(); void createWindow(); void MyWindow::destroyWindow(); }; MyWindow.cpp
      #include "MyWindow.h" MyWindow::MyWindow(int windowWidth, int windowHeight, const char * windowTitle) { this->windowHandle = NULL; this->windowWidth = windowWidth; this->windowWidth = windowWidth; this->windowHeight = windowHeight; this->windowTitle = windowTitle; glfwInit(); } MyWindow::~MyWindow() { } GLFWwindow * MyWindow::getWindowHandle() { return this->windowHandle; } void MyWindow::createWindow() { // Use OpenGL 3.3 and GLSL 3.3 glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3); glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3); // Limit backwards compatibility glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE); glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE); // Prevent resizing window glfwWindowHint(GLFW_RESIZABLE, GL_FALSE); // Create window this->windowHandle = glfwCreateWindow(this->windowWidth, this->windowHeight, this->windowTitle, NULL, NULL); glfwMakeContextCurrent(this->windowHandle); } void MyWindow::destroyWindow() { glfwTerminate(); } MyShapes.h
      #pragma once #include <glad\glad.h> #include <GLFW\glfw3.h> class MyShapes { public: MyShapes(); ~MyShapes(); GLuint & drawTriangle(float coordinates[]); }; MyShapes.cpp
      #include "MyShapes.h" MyShapes::MyShapes() { } MyShapes::~MyShapes() { } GLuint & MyShapes::drawTriangle(float coordinates[]) { GLuint vertexBufferObject{}; GLuint vertexArrayObject{}; // Create a VAO glGenVertexArrays(1, &vertexArrayObject); glBindVertexArray(vertexArrayObject); // Send vertices to the GPU glGenBuffers(1, &vertexBufferObject); glBindBuffer(GL_ARRAY_BUFFER, vertexBufferObject); glBufferData(GL_ARRAY_BUFFER, sizeof(coordinates), coordinates, GL_STATIC_DRAW); // Dertermine the interpretation of the array buffer glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3*sizeof(float), (void *)0); glEnableVertexAttribArray(0); // Unbind the buffers glBindBuffer(GL_ARRAY_BUFFER, 0); glBindVertexArray(0); return vertexArrayObject; } MyFileHandler.h
      #pragma once #include <cstdio> #include <cstdlib> class MyFileHandler { private: const char * fileName; unsigned long fileSize; void setFileSize(); public: MyFileHandler(const char * fileName); ~MyFileHandler(); unsigned long getFileSize(); const char * readFile(); }; MyFileHandler.cpp
      #include "MyFileHandler.h" MyFileHandler::MyFileHandler(const char * fileName) { this->fileName = fileName; this->setFileSize(); } MyFileHandler::~MyFileHandler() { } void MyFileHandler::setFileSize() { FILE * fileHandle = NULL; fopen_s(&fileHandle, this->fileName, "rb"); fseek(fileHandle, 0L, SEEK_END); this->fileSize = ftell(fileHandle); rewind(fileHandle); fclose(fileHandle); return; } unsigned long MyFileHandler::getFileSize() { return (this->fileSize); } const char * MyFileHandler::readFile() { char * buffer = (char *)malloc((this->fileSize)+1); FILE * fileHandle = NULL; fopen_s(&fileHandle, this->fileName, "rb"); fread(buffer, this->fileSize, sizeof(char), fileHandle); fclose(fileHandle); buffer[this->fileSize] = '\0'; return buffer; } VertexShader.glsl
      #version 330 core layout (location = 0) vec3 VertexPositions; void main() { gl_Position = vec4(VertexPositions, 1.0f); } FragmentShader.glsl
      #version 330 core out vec4 FragmentColor; void main() { FragmentColor = vec4(1.0f, 0.0f, 0.0f, 1.0f); } I am attempting to create a simple engine/graphics utility using some object-oriented paradigms. My first goal is to get some output from my engine, namely, a simple red triangle.
      For this goal, the MyShapes class will be responsible for defining shapes such as triangles, polygons etc. Currently, there is only a drawTriangle() method implemented, because I first wanted to see whether it works or not before attempting to code other shape drawing methods.
      The constructor of the MyEngine class creates a GLFW window (GLAD is also initialized here to load all OpenGL functionality), and the myEngine.run() method in Main.cpp is responsible for firing up the engine. In this run() method, the shaders get loaded from files via the help of my FileHandler class. The vertices for the triangle are processed by the myShapes.drawTriangle() method where a vertex array object, a vertex buffer object and vertrex attributes are set for this purpose.
      The while loop in the run() method should be outputting me the desired red triangle, but all I get is a grey window area. Why?
      Note: The shaders are compiling and linking without any errors.
      (Note: I am aware that this code is not using any good software engineering practices (e.g. exceptions, error handling). I am planning to implement them later, once I get the hang of OpenGL.)

       
    • By KarimIO
      EDIT: I thought this was restricted to Attribute-Created GL contexts, but it isn't, so I rewrote the post.
      Hey guys, whenever I call SwapBuffers(hDC), I get a crash, and I get a "Too many posts were made to a semaphore." from Windows as I call SwapBuffers. What could be the cause of this?
      Update: No crash occurs if I don't draw, just clear and swap.
      static PIXELFORMATDESCRIPTOR pfd = // pfd Tells Windows How We Want Things To Be { sizeof(PIXELFORMATDESCRIPTOR), // Size Of This Pixel Format Descriptor 1, // Version Number PFD_DRAW_TO_WINDOW | // Format Must Support Window PFD_SUPPORT_OPENGL | // Format Must Support OpenGL PFD_DOUBLEBUFFER, // Must Support Double Buffering PFD_TYPE_RGBA, // Request An RGBA Format 32, // Select Our Color Depth 0, 0, 0, 0, 0, 0, // Color Bits Ignored 0, // No Alpha Buffer 0, // Shift Bit Ignored 0, // No Accumulation Buffer 0, 0, 0, 0, // Accumulation Bits Ignored 24, // 24Bit Z-Buffer (Depth Buffer) 0, // No Stencil Buffer 0, // No Auxiliary Buffer PFD_MAIN_PLANE, // Main Drawing Layer 0, // Reserved 0, 0, 0 // Layer Masks Ignored }; if (!(hDC = GetDC(windowHandle))) return false; unsigned int PixelFormat; if (!(PixelFormat = ChoosePixelFormat(hDC, &pfd))) return false; if (!SetPixelFormat(hDC, PixelFormat, &pfd)) return false; hRC = wglCreateContext(hDC); if (!hRC) { std::cout << "wglCreateContext Failed!\n"; return false; } if (wglMakeCurrent(hDC, hRC) == NULL) { std::cout << "Make Context Current Second Failed!\n"; return false; } ... // OGL Buffer Initialization glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT); glBindVertexArray(vao); glUseProgram(myprogram); glDrawElements(GL_TRIANGLES, indexCount, GL_UNSIGNED_SHORT, (void *)indexStart); SwapBuffers(GetDC(window_handle));  
    • By Tchom
      Hey devs!
       
      I've been working on a OpenGL ES 2.0 android engine and I have begun implementing some simple (point) lighting. I had something fairly simple working, so I tried to get fancy and added color-tinting light. And it works great... with only one or two lights. Any more than that, the application drops about 15 frames per light added (my ideal is at least 4 or 5). I know implementing lighting is expensive, I just didn't think it was that expensive. I'm fairly new to the world of OpenGL and GLSL, so there is a good chance I've written some crappy shader code. If anyone had any feedback or tips on how I can optimize this code, please let me know.
       
      Vertex Shader
      uniform mat4 u_MVPMatrix; uniform mat4 u_MVMatrix; attribute vec4 a_Position; attribute vec3 a_Normal; attribute vec2 a_TexCoordinate; varying vec3 v_Position; varying vec3 v_Normal; varying vec2 v_TexCoordinate; void main() { v_Position = vec3(u_MVMatrix * a_Position); v_TexCoordinate = a_TexCoordinate; v_Normal = vec3(u_MVMatrix * vec4(a_Normal, 0.0)); gl_Position = u_MVPMatrix * a_Position; } Fragment Shader
      precision mediump float; uniform vec4 u_LightPos["+numLights+"]; uniform vec4 u_LightColours["+numLights+"]; uniform float u_LightPower["+numLights+"]; uniform sampler2D u_Texture; varying vec3 v_Position; varying vec3 v_Normal; varying vec2 v_TexCoordinate; void main() { gl_FragColor = (texture2D(u_Texture, v_TexCoordinate)); float diffuse = 0.0; vec4 colourSum = vec4(1.0); for (int i = 0; i < "+numLights+"; i++) { vec3 toPointLight = vec3(u_LightPos[i]); float distance = length(toPointLight - v_Position); vec3 lightVector = normalize(toPointLight - v_Position); float diffuseDiff = 0.0; // The diffuse difference contributed from current light diffuseDiff = max(dot(v_Normal, lightVector), 0.0); diffuseDiff = diffuseDiff * (1.0 / (1.0 + ((1.0-u_LightPower[i])* distance * distance))); //Determine attenuatio diffuse += diffuseDiff; gl_FragColor.rgb *= vec3(1.0) / ((vec3(1.0) + ((vec3(1.0) - vec3(u_LightColours[i]))*diffuseDiff))); //The expensive part } diffuse += 0.1; //Add ambient light gl_FragColor.rgb *= diffuse; } Am I making any rookie mistakes? Or am I just being unrealistic about what I can do? Thanks in advance
    • By yahiko00
      Hi,
      Not sure to post at the right place, if not, please forgive me...
      For a game project I am working on, I would like to implement a 2D starfield as a background.
      I do not want to deal with static tiles, since I plan to slowly animate the starfield. So, I am trying to figure out how to generate a random starfield for the entire map.
      I feel that using a uniform distribution for the stars will not do the trick. Instead I would like something similar to the screenshot below, taken from the game Star Wars: Empire At War (all credits to Lucasfilm, Disney, and so on...).

      Is there someone who could have an idea of a distribution which could result in such a starfield?
      Any insight would be appreciated
    • By afraidofdark
      I have just noticed that, in quake 3 and half - life, dynamic models are effected from light map. For example in dark areas, gun that player holds seems darker. How did they achieve this effect ? I can use image based lighting techniques however (Like placing an environment probe and using it for reflections and ambient lighting), this tech wasn't used in games back then, so there must be a simpler method to do this.
      Here is a link that shows how modern engines does it. Indirect Lighting Cache It would be nice if you know a paper that explains this technique. Can I apply this to quake 3' s light map generator and bsp format ?
  • Popular Now