• Announcements

    • khawk

      Download the Game Design and Indie Game Marketing Freebook   07/19/17

      GameDev.net and CRC Press have teamed up to bring a free ebook of content curated from top titles published by CRC Press. The freebook, Practices of Game Design & Indie Game Marketing, includes chapters from The Art of Game Design: A Book of Lenses, A Practical Guide to Indie Game Marketing, and An Architectural Approach to Level Design. The GameDev.net FreeBook is relevant to game designers, developers, and those interested in learning more about the challenges in game development. We know game development can be a tough discipline and business, so we picked several chapters from CRC Press titles that we thought would be of interest to you, the GameDev.net audience, in your journey to design, develop, and market your next game. The free ebook is available through CRC Press by clicking here. The Curated Books The Art of Game Design: A Book of Lenses, Second Edition, by Jesse Schell Presents 100+ sets of questions, or different lenses, for viewing a game’s design, encompassing diverse fields such as psychology, architecture, music, film, software engineering, theme park design, mathematics, anthropology, and more. Written by one of the world's top game designers, this book describes the deepest and most fundamental principles of game design, demonstrating how tactics used in board, card, and athletic games also work in video games. It provides practical instruction on creating world-class games that will be played again and again. View it here. A Practical Guide to Indie Game Marketing, by Joel Dreskin Marketing is an essential but too frequently overlooked or minimized component of the release plan for indie games. A Practical Guide to Indie Game Marketing provides you with the tools needed to build visibility and sell your indie games. With special focus on those developers with small budgets and limited staff and resources, this book is packed with tangible recommendations and techniques that you can put to use immediately. As a seasoned professional of the indie game arena, author Joel Dreskin gives you insight into practical, real-world experiences of marketing numerous successful games and also provides stories of the failures. View it here. An Architectural Approach to Level Design This is one of the first books to integrate architectural and spatial design theory with the field of level design. The book presents architectural techniques and theories for level designers to use in their own work. It connects architecture and level design in different ways that address the practical elements of how designers construct space and the experiential elements of how and why humans interact with this space. Throughout the text, readers learn skills for spatial layout, evoking emotion through gamespaces, and creating better levels through architectural theory. View it here. Learn more and download the ebook by clicking here. Did you know? GameDev.net and CRC Press also recently teamed up to bring GDNet+ Members up to a 20% discount on all CRC Press books. Learn more about this and other benefits here.
Sign in to follow this  
Followers 0
Syerjchep

OpenGL
Rendering to texture. (Efficent dynamic clouds)

2 posts in this topic

I've got some dynamicly generated clouds made from perlin noise. Then they're rendered onto a grid of white triangles with varying transparencies (the result of the perlin noise) where they make a square above my ground.
 
GLuint cloudVAO;
GLuint cloudVertBuffer;
GLuint cloudTransBuffer;
 
vector<float> cloudTrans;
vector<glm::vec3> cloudVerts;
 
float cloudHeight = 250;
 
void renderClouds(Perlin cloudPerlin)
{
    cloudVerts.empty();
    cloudTrans.empty();
 
    for(float x = 0; x < 1024; x++)
    {
        for(float y = 0; y<1024; y++)
        {
            float perlin = cloudPerlin.Get(x/1024.0f,y/1024.0f);
            perlin++;
            perlin/=2.0f;
 
            //log(istr(x) + " " + istr(y) + " " + fstr(perlin));
 
            /*glm::vec3 tmp(x,y,100);
            cloudVerts.push_back(tmp);*/
 
            glm::vec3 temp1(x,cloudHeight,y);
            glm::vec3 temp2(x,cloudHeight,y+1);
            glm::vec3 temp3(x+1,cloudHeight,y);
 
            glm::vec3 temp4(x+1,cloudHeight,y+1);
            glm::vec3 temp5(x+1,cloudHeight,y);
            glm::vec3 temp6(x,cloudHeight,y+1);
 
            cloudVerts.push_back(temp1);
            cloudVerts.push_back(temp2);
            cloudVerts.push_back(temp3);
            cloudVerts.push_back(temp4);
            cloudVerts.push_back(temp5);
            cloudVerts.push_back(temp6);
 
            cloudTrans.push_back(perlin);
            cloudTrans.push_back(perlin);
            cloudTrans.push_back(perlin);
            cloudTrans.push_back(perlin);
            cloudTrans.push_back(perlin);
            cloudTrans.push_back(perlin);
        }
    }
 
 
    glGenVertexArrays(1,&cloudVAO);
    glBindVertexArray(cloudVAO);
 
    glGenBuffers(1, &cloudVertBuffer);
    glEnableVertexAttribArray(0);
    glBindBuffer(GL_ARRAY_BUFFER, cloudVertBuffer);
    glBufferData(GL_ARRAY_BUFFER, cloudVerts.size() * sizeof(glm::vec3), &cloudVerts[0], GL_STATIC_DRAW);
    glVertexAttribPointer(
            0,                  // attribute
            3,                  // size
            GL_FLOAT,           // type
            GL_FALSE,           // normalized?
            0,                  // stride
            (void*)0            // array buffer offset
    );
 
    glGenBuffers(1, &cloudTransBuffer);
    glEnableVertexAttribArray(6);
    glBindBuffer(GL_ARRAY_BUFFER, cloudTransBuffer);
    glBufferData(GL_ARRAY_BUFFER, cloudTrans.size() * sizeof(float), &cloudTrans[0], GL_STATIC_DRAW);
    glVertexAttribPointer(
            6,                  // attribute
            1,                  // size
            GL_FLOAT,           // type
            GL_FALSE,           // normalized?
            0,                  // stride
            (void*)0            // array buffer offset
    );
}
 
GLuint cloudID;
 
void displayClouds()
{
    glDisable(GL_CULL_FACE);
    transform(0,0,0);
    glUniform1i(cloudID,1);
    glBindVertexArray(cloudVAO);
    glDrawArrays(GL_TRIANGLES, 0, cloudVerts.size() );
    glUniform1i(cloudID,0);
    glEnable(GL_CULL_FACE);
}
Fragment shader:
#version 330 core

// Interpolated values from the vertex shaders
in vec2 UV;
in vec3 Position_worldspace;
in vec3 Normal_cameraspace;
in vec3 EyeDirection_cameraspace;
in vec3 ambientColor;
in vec3 diffuseColor;
in vec3 specularColor;
in float cloudTrans;

in vec3 Light0Direction_cameraspace;
in vec3 Light1Direction_cameraspace;
in vec3 Light2Direction_cameraspace;
in vec3 Light3Direction_cameraspace;
in vec3 Light4Direction_cameraspace;
in vec3 Light5Direction_cameraspace;
in vec3 Light6Direction_cameraspace;
in vec3 Light7Direction_cameraspace;

// Ouput data
out vec4 color;

// Values that stay constant for the whole mesh.
uniform sampler2D myTextureSampler;
uniform mat4 MV;
uniform int textured;
uniform int terrain;
uniform vec3 worldAmbient;
uniform int cloud;

uniform vec3 Light0_Position;
uniform vec3 Light1_Position;
uniform vec3 Light2_Position;
uniform vec3 Light3_Position;
uniform vec3 Light4_Position;
uniform vec3 Light5_Position;
uniform vec3 Light6_Position;
uniform vec3 Light7_Position;

uniform vec3 Light0_Color;
uniform vec3 Light1_Color;
uniform vec3 Light2_Color;
uniform vec3 Light3_Color;
uniform vec3 Light4_Color;
uniform vec3 Light5_Color;
uniform vec3 Light6_Color;
uniform vec3 Light7_Color;

uniform float Light0_Power;
uniform float Light1_Power;
uniform float Light2_Power;
uniform float Light3_Power;
uniform float Light4_Power;
uniform float Light5_Power;
uniform float Light6_Power;
uniform float Light7_Power;

uniform vec3 sunColor;
uniform vec3 sunPos;
in vec3 sunDirection_cameraspace;

void main()
{
	// Material properties
	vec3 MaterialDiffuseColor = diffuseColor;
	vec3 MaterialAmbientColor = ambientColor;
	vec3 MaterialSpecularColor = specularColor;

	if(cloud == 1)
	{
		color = vec4(1,1,1,cloudTrans);
	}
	else
	{

	if(terrain == 1)
	{
		MaterialAmbientColor = texture2D( myTextureSampler, UV ).rgb * worldAmbient;
		MaterialDiffuseColor = MaterialAmbientColor;
		MaterialSpecularColor = vec3(0,0,0);
	}
	else
	{

	if(textured == 1)
	{
		MaterialAmbientColor = texture2D( myTextureSampler, UV ).rgb * worldAmbient;
		MaterialDiffuseColor = diffuseColor * texture2D( myTextureSampler, UV ).rgb;
		MaterialSpecularColor = specularColor;
	}
	else
	{
		//blender wasn't exporting ambient colors, so we're using diffuse for now
		MaterialAmbientColor = MaterialDiffuseColor * worldAmbient;
	}

	}

	float distance0 = length( Light0_Position - Position_worldspace );
	float distance1 = length( Light1_Position - Position_worldspace );
	float distance2 = length( Light2_Position - Position_worldspace );
	float distance3 = length( Light3_Position - Position_worldspace );
	float distance4 = length( Light4_Position - Position_worldspace );
	float distance5 = length( Light5_Position - Position_worldspace );
	float distance6 = length( Light6_Position - Position_worldspace );
	float distance7 = length( Light7_Position - Position_worldspace );

	vec3 n = normalize( Normal_cameraspace );
	vec3 E = normalize(EyeDirection_cameraspace);

	vec3 l0 = normalize( Light0Direction_cameraspace );
	float cosTheta0 = clamp( dot( n,l0 ), 0,1 );

	vec3 l1 = normalize( Light1Direction_cameraspace );
	float cosTheta1 = clamp( dot( n,l1 ), 0,1 );

	vec3 l2 = normalize( Light2Direction_cameraspace );
	float cosTheta2 = clamp( dot( n,l2 ), 0,1 );

	vec3 l3 = normalize( Light3Direction_cameraspace );
	float cosTheta3 = clamp( dot( n,l3 ), 0,1 );

	vec3 l4 = normalize( Light4Direction_cameraspace );
	float cosTheta4 = clamp( dot( n,l4 ), 0,1 );

	vec3 l5 = normalize( Light5Direction_cameraspace );
	float cosTheta5 = clamp( dot( n,l5 ), 0,1 );

	vec3 l6 = normalize( Light6Direction_cameraspace );
	float cosTheta6 = clamp( dot( n,l6 ), 0,1 );

	vec3 l7 = normalize( Light7Direction_cameraspace );
	float cosTheta7 = clamp( dot( n,l7 ), 0,1 );

	vec3 lS = normalize( sunDirection_cameraspace );
	float cosThetaS = clamp( dot( n,lS ), 0,1 );

	vec3 R0 = reflect(-l0,n);
	float cosAlpha0 = clamp( dot( E,R0 ), 0,1 );

	vec3 R1 = reflect(-l1,n);
	float cosAlpha1 = clamp( dot( E,R1 ), 0,1 );

	vec3 R2 = reflect(-l2,n);
	float cosAlpha2 = clamp( dot( E,R2 ), 0,1 );

	vec3 R3 = reflect(-l3,n);
	float cosAlpha3 = clamp( dot( E,R3 ), 0,1 );

	vec3 R4 = reflect(-l4,n);
	float cosAlpha4 = clamp( dot( E,R4 ), 0,1 );

	vec3 R5 = reflect(-l5,n);
	float cosAlpha5 = clamp( dot( E,R5 ), 0,1 );

	vec3 R6 = reflect(-l6,n);
	float cosAlpha6 = clamp( dot( E,R6 ), 0,1 );

	vec3 R7 = reflect(-l7,n);
	float cosAlpha7 = clamp( dot( E,R7 ), 0,1 );

	vec3 colorPower0 = Light0_Color * Light0_Power;
	vec3 colorPower1 = Light1_Color * Light1_Power;
	vec3 colorPower2 = Light2_Color * Light2_Power;
	vec3 colorPower3 = Light3_Color * Light3_Power;
	vec3 colorPower4 = Light4_Color * Light4_Power;
	vec3 colorPower5 = Light5_Color * Light5_Power;
	vec3 colorPower6 = Light6_Color * Light6_Power;
	vec3 colorPower7 = Light7_Color * Light7_Power;

	vec3 MaterialDiffuseColor0 = colorPower0 * cosTheta0 / (distance0*distance0);
	vec3 MaterialSpecularColor0 = Light0_Color * Light0_Power * pow(cosAlpha0,5) / (distance0*distance0);

	vec3 MaterialDiffuseColor1 = colorPower1 * cosTheta1 / (distance1*distance1);
	vec3 MaterialSpecularColor1 = Light1_Color * Light1_Power * pow(cosAlpha1,5) / (distance1*distance1);

	vec3 MaterialDiffuseColor2 = colorPower2 * cosTheta2 / (distance2*distance2);
	vec3 MaterialSpecularColor2 = Light2_Color * Light2_Power * pow(cosAlpha2,5) / (distance2*distance2);

	vec3 MaterialDiffuseColor3 = colorPower3 * cosTheta3 / (distance3*distance3);
	vec3 MaterialSpecularColor3 = Light3_Color * Light3_Power * pow(cosAlpha3,5) / (distance3*distance3);

	vec3 MaterialDiffuseColor4 = colorPower4 * cosTheta4 / (distance4*distance4);
	vec3 MaterialSpecularColor4 = Light4_Color * Light4_Power * pow(cosAlpha4,5) / (distance4*distance4);

	vec3 MaterialDiffuseColor5 = colorPower5 * cosTheta5 / (distance5*distance5);
	vec3 MaterialSpecularColor5 = Light5_Color * Light5_Power * pow(cosAlpha5,5) / (distance5*distance5);

	vec3 MaterialDiffuseColor6 = colorPower6 * cosTheta6 / (distance6*distance6);
	vec3 MaterialSpecularColor6 = Light6_Color * Light6_Power * pow(cosAlpha6,5) / (distance6*distance6);

	vec3 MaterialDiffuseColor7 = colorPower7 * cosTheta7 / (distance7*distance7);
	vec3 MaterialSpecularColor7 = Light7_Color * Light7_Power * pow(cosAlpha7,5) / (distance7*distance7);

	vec3 tmpcolor = MaterialAmbientColor;

	tmpcolor += MaterialDiffuseColor * sunColor * cosThetaS;

	tmpcolor += (MaterialDiffuseColor * MaterialDiffuseColor0) + (MaterialSpecularColor * MaterialSpecularColor0);
	tmpcolor += (MaterialDiffuseColor * MaterialDiffuseColor1) + (MaterialSpecularColor * MaterialSpecularColor1);
	tmpcolor += (MaterialDiffuseColor * MaterialDiffuseColor2) + (MaterialSpecularColor * MaterialSpecularColor2);
	tmpcolor += (MaterialDiffuseColor * MaterialDiffuseColor3) + (MaterialSpecularColor * MaterialSpecularColor3);
	tmpcolor += (MaterialDiffuseColor * MaterialDiffuseColor4) + (MaterialSpecularColor * MaterialSpecularColor4);
	tmpcolor += (MaterialDiffuseColor * MaterialDiffuseColor5) + (MaterialSpecularColor * MaterialSpecularColor5);
	tmpcolor += (MaterialDiffuseColor * MaterialDiffuseColor6) + (MaterialSpecularColor * MaterialSpecularColor6);
	tmpcolor += (MaterialDiffuseColor * MaterialDiffuseColor7) + (MaterialSpecularColor * MaterialSpecularColor7);
	color = vec4(tmpcolor,1);

	}
}
There's a vertex shader too, but it's not relevant.

clouds.png
Clouds from below.
clouds_from_above.png
Clouds from above.

Problems:
1. They end abruptly.
2. The clouds end up being over 2 million faces and bring the fps down to almost 1.

So, how do I do decent dynamic (moving/changeable) clouds in opengl 4? Edited by Syerjchep
0

Share this post


Link to post
Share on other sites

Those clouds look flat for me. 

If you are not trying to create volumetric clouds, you should not use the noise to create vertices with it, but instead try to write the noise to a texture and replace the 2 million faces with just a simple one. Moving and changing is then a lot easier without a noticable fps-drop.

 

IF you are trying to create volumetric clouds you should use a different approach as explained here http://graphicsrunner.blogspot.de/2008/03/volumetric-clouds.html for example.

0

Share this post


Link to post
Share on other sites

Those clouds look flat for me. 
If you are not trying to create volumetric clouds, you should not use the noise to create vertices with it, but instead try to write the noise to a texture and replace the 2 million faces with just a simple one. Moving and changing is then a lot easier without a noticable fps-drop.
 
IF you are trying to create volumetric clouds you should use a different approach as explained here http://graphicsrunner.blogspot.de/2008/03/volumetric-clouds.html for example.

I know they're flat. That doesn't matter, in what I'm doing the user will never be as high as the clouds.

Anyway, I tried rendering to texture, but no matter what I try my texture remains solid black:

GLuint cloudFramebufferName;
GLuint cloudRenderedTexture;
GLuint cloudVAO;
GLuint cloudVertBuffer;
GLuint cloudTransBuffer;

vector<float> cloudTrans;
vector<glm::vec3> cloudVerts;

float cloudHeight = 250;

void renderClouds(Perlin cloudPerlin)
{
    cloudVerts.empty();
    cloudTrans.empty();

    for(float x = 0; x < 1024; x++)
    {
        for(float y = 0; y<1024; y++)
        {
            float perlin = cloudPerlin.Get(x/1024.0f,y/1024.0f);
            perlin++;
            perlin/=2.0f;

            //log(istr(x) + " " + istr(y) + " " + fstr(perlin));

            /*glm::vec3 tmp(x,y,100);
            cloudVerts.push_back(tmp);*/

            glm::vec3 temp1(x,cloudHeight,y);
            glm::vec3 temp2(x,cloudHeight,y+1);
            glm::vec3 temp3(x+1,cloudHeight,y);

            glm::vec3 temp4(x+1,cloudHeight,y+1);
            glm::vec3 temp5(x+1,cloudHeight,y);
            glm::vec3 temp6(x,cloudHeight,y+1);

            cloudVerts.push_back(temp1);
            cloudVerts.push_back(temp2);
            cloudVerts.push_back(temp3);
            cloudVerts.push_back(temp4);
            cloudVerts.push_back(temp5);
            cloudVerts.push_back(temp6);

            cloudTrans.push_back(perlin);
            cloudTrans.push_back(perlin);
            cloudTrans.push_back(perlin);
            cloudTrans.push_back(perlin);
            cloudTrans.push_back(perlin);
            cloudTrans.push_back(perlin);
        }
    }


    glGenVertexArrays(1,&cloudVAO);
    glBindVertexArray(cloudVAO);

    glGenBuffers(1, &cloudVertBuffer);
    glEnableVertexAttribArray(0);
    glBindBuffer(GL_ARRAY_BUFFER, cloudVertBuffer);
    glBufferData(GL_ARRAY_BUFFER, cloudVerts.size() * sizeof(glm::vec3), &cloudVerts[0], GL_STATIC_DRAW);
    glVertexAttribPointer(
            0,                  // attribute
            3,                  // size
            GL_FLOAT,           // type
            GL_FALSE,           // normalized?
            0,                  // stride
            (void*)0            // array buffer offset
    );

    glGenBuffers(1, &cloudTransBuffer);
    glEnableVertexAttribArray(6);
    glBindBuffer(GL_ARRAY_BUFFER, cloudTransBuffer);
    glBufferData(GL_ARRAY_BUFFER, cloudTrans.size() * sizeof(float), &cloudTrans[0], GL_STATIC_DRAW);
    glVertexAttribPointer(
            6,                  // attribute
            1,                  // size
            GL_FLOAT,           // type
            GL_FALSE,           // normalized?
            0,                  // stride
            (void*)0            // array buffer offset
    );
}

GLuint cloudID;

vector<glm::vec3> newCloudVerts;
vector<glm::vec2> newCloudUvs;

GLuint newCloudVAO;
GLuint newCloudVertBuffer;
GLuint newCloudUVBuffer;

void displayClouds()
{
    glGenFramebuffers(1, &cloudFramebufferName);
    glBindFramebuffer(GL_FRAMEBUFFER, cloudFramebufferName);

    glGenTextures(1, &cloudRenderedTexture);
    glBindTexture(GL_TEXTURE_2D, cloudRenderedTexture);

    glTexImage2D(GL_TEXTURE_2D, 0,GL_RGBA, 1024, 1024, 0, GL_RGBA, GL_UNSIGNED_BYTE, 0);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
    glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, cloudRenderedTexture, 0);

    GLenum DrawBuffers[1] = {GL_COLOR_ATTACHMENT0};
    glDrawBuffers(1, DrawBuffers);

    glBindFramebuffer(GL_FRAMEBUFFER, cloudFramebufferName);
    glViewport(0,0,1024,1024);

    if(glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE)
    {
        log("Error with framebuffer.");
    }

    GLuint cloudProgramID = LoadShaders( "cloudVert.glsl", "cloudFrag.glsl" );
    glUseProgram(cloudProgramID);

    glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

    glDisable(GL_CULL_FACE);

    transform(0,0,0);
    glBindVertexArray(cloudVAO);
    glDrawArrays(GL_TRIANGLES, 0, cloudVerts.size() );

    glEnable(GL_CULL_FACE);

    glBindFramebuffer(GL_FRAMEBUFFER, 0);
    glViewport(0,0,screenx,screeny);
    glUseProgram(programID);

    newCloudVerts.empty();
    newCloudUvs.empty();

    glm::vec3 tmp1(0,cloudHeight,0);
    newCloudVerts.push_back(tmp1);
    glm::vec3 tmp2(0,cloudHeight,1024);
    newCloudVerts.push_back(tmp2);
    glm::vec3 tmp3(1024,cloudHeight,1024);
    newCloudVerts.push_back(tmp3);

    glm::vec3 tmp4(0,cloudHeight,0);
    newCloudVerts.push_back(tmp4);
    glm::vec3 tmp5(1024,cloudHeight,0);
    newCloudVerts.push_back(tmp5);
    glm::vec3 tmp6(1024,cloudHeight,1024);
    newCloudVerts.push_back(tmp6);

    glm::vec2 uv1(0,0);
    newCloudUvs.push_back(uv1);
    glm::vec2 uv2(0,1);
    newCloudUvs.push_back(uv2);
    glm::vec2 uv3(1,1);
    newCloudUvs.push_back(uv3);

    glm::vec2 uv4(0,0);
    newCloudUvs.push_back(uv4);
    glm::vec2 uv5(1,0);
    newCloudUvs.push_back(uv5);
    glm::vec2 uv6(1,1);
    newCloudUvs.push_back(uv6);


    glGenVertexArrays(1,&newCloudVAO);
    glBindVertexArray(newCloudVAO);

    glGenBuffers(1, &newCloudVertBuffer);
    glEnableVertexAttribArray(0);
    glBindBuffer(GL_ARRAY_BUFFER, newCloudVertBuffer);
    glBufferData(GL_ARRAY_BUFFER, newCloudVerts.size() * sizeof(glm::vec3), &newCloudVerts[0], GL_STATIC_DRAW);
    glVertexAttribPointer(
            0,                  // attribute
            3,                  // size
            GL_FLOAT,           // type
            GL_FALSE,           // normalized?
            0,                  // stride
            (void*)0            // array buffer offset
    );

    glGenBuffers(1, &newCloudUVBuffer);
    glEnableVertexAttribArray(1);
    glBindBuffer(GL_ARRAY_BUFFER, newCloudUVBuffer);
    glBufferData(GL_ARRAY_BUFFER, newCloudUvs.size() * sizeof(float), &newCloudUvs[0], GL_STATIC_DRAW);
    glVertexAttribPointer(
            1,                  // attribute
            2,                  // size
            GL_FLOAT,           // type
            GL_FALSE,           // normalized?
            0,                  // stride
            (void*)0            // array buffer offset
    );
}

void showClouds()
{
    glDisable(GL_CULL_FACE);
    transform(0,0,0);
    glBindVertexArray(newCloudVAO);
    glDrawArrays(GL_TRIANGLES, 0, newCloudVerts.size() );
    glEnable(GL_CULL_FACE);
}
cloudFrag.glsl:
#version 330 core

in float cloudColor;
out vec4 color;

void main()
{
    color = vec4(1,1,1,cloudColor);
}
cloudVert.glsl:
#version 330 core

layout(location = 0) in vec3 vertexPosition_modelspace;
layout(location = 6) in float vertexCloudTrans;

out float cloudColor;

void main()
{
	gl_Position = vec4(vertexPosition_modelspace,1);
	cloudColor = vertexCloudTrans;
}
No error as far as I know, it's just not putting anything on the texture.
I don't know what I'm doing.
0

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!


Register a new account

Sign in

Already have an account? Sign in here.


Sign In Now
Sign in to follow this  
Followers 0

  • Similar Content

    • By Solid_Spy
      Hello, I have been working on SH Irradiance map rendering, and I have been using a GLSL pixel shader to render SH irradiance to 2D irradiance maps for my static objects. I already have it working with 9 3D textures so far for the first 9 SH functions.
      In my GLSL shader, I have to send in 9 SH Coefficient 3D Texures that use RGBA8 as a pixel format. RGB being used for the coefficients for red, green, and blue, and the A for checking if the voxel is in use (for the 3D texture solidification shader to prevent bleeding).
      My problem is, I want to knock this number of textures down to something like 4 or 5. Getting even lower would be a godsend. This is because I eventually plan on adding more SH Coefficient 3D Textures for other parts of the game map (such as inside rooms, as opposed to the outside), to circumvent irradiance probe bleeding between rooms separated by walls. I don't want to reach the 32 texture limit too soon. Also, I figure that it would be a LOT faster.
      Is there a way I could, say, store 2 sets of SH Coefficients for 2 SH functions inside a texture with RGBA16 pixels? If so, how would I extract them from inside GLSL? Let me know if you have any suggestions ^^.
    • By DaniDesu
      #include "MyEngine.h" int main() { MyEngine myEngine; myEngine.run(); return 0; } MyEngine.h
      #pragma once #include "MyWindow.h" #include "MyShaders.h" #include "MyShapes.h" class MyEngine { private: GLFWwindow * myWindowHandle; MyWindow * myWindow; public: MyEngine(); ~MyEngine(); void run(); }; MyEngine.cpp
      #include "MyEngine.h" MyEngine::MyEngine() { MyWindow myWindow(800, 600, "My Game Engine"); this->myWindow = &myWindow; myWindow.createWindow(); this->myWindowHandle = myWindow.getWindowHandle(); // Load all OpenGL function pointers for use gladLoadGLLoader((GLADloadproc)glfwGetProcAddress); } MyEngine::~MyEngine() { this->myWindow->destroyWindow(); } void MyEngine::run() { MyShaders myShaders("VertexShader.glsl", "FragmentShader.glsl"); MyShapes myShapes; GLuint vertexArrayObjectHandle; float coordinates[] = { 0.5f, 0.5f, 0.0f, 0.5f, -0.5f, 0.0f, -0.5f, 0.5f, 0.0f }; vertexArrayObjectHandle = myShapes.drawTriangle(coordinates); while (!glfwWindowShouldClose(this->myWindowHandle)) { glClearColor(0.5f, 0.5f, 0.5f, 1.0f); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Draw something glUseProgram(myShaders.getShaderProgram()); glBindVertexArray(vertexArrayObjectHandle); glDrawArrays(GL_TRIANGLES, 0, 3); glfwSwapBuffers(this->myWindowHandle); glfwPollEvents(); } } MyShaders.h
      #pragma once #include <glad\glad.h> #include <GLFW\glfw3.h> #include "MyFileHandler.h" class MyShaders { private: const char * vertexShaderFileName; const char * fragmentShaderFileName; const char * vertexShaderCode; const char * fragmentShaderCode; GLuint vertexShaderHandle; GLuint fragmentShaderHandle; GLuint shaderProgram; void compileShaders(); public: MyShaders(const char * vertexShaderFileName, const char * fragmentShaderFileName); ~MyShaders(); GLuint getShaderProgram(); const char * getVertexShaderCode(); const char * getFragmentShaderCode(); }; MyShaders.cpp
      #include "MyShaders.h" MyShaders::MyShaders(const char * vertexShaderFileName, const char * fragmentShaderFileName) { this->vertexShaderFileName = vertexShaderFileName; this->fragmentShaderFileName = fragmentShaderFileName; // Load shaders from files MyFileHandler myVertexShaderFileHandler(this->vertexShaderFileName); this->vertexShaderCode = myVertexShaderFileHandler.readFile(); MyFileHandler myFragmentShaderFileHandler(this->fragmentShaderFileName); this->fragmentShaderCode = myFragmentShaderFileHandler.readFile(); // Compile shaders this->compileShaders(); } MyShaders::~MyShaders() { } void MyShaders::compileShaders() { this->vertexShaderHandle = glCreateShader(GL_VERTEX_SHADER); this->fragmentShaderHandle = glCreateShader(GL_FRAGMENT_SHADER); glShaderSource(this->vertexShaderHandle, 1, &(this->vertexShaderCode), NULL); glShaderSource(this->fragmentShaderHandle, 1, &(this->fragmentShaderCode), NULL); glCompileShader(this->vertexShaderHandle); glCompileShader(this->fragmentShaderHandle); this->shaderProgram = glCreateProgram(); glAttachShader(this->shaderProgram, this->vertexShaderHandle); glAttachShader(this->shaderProgram, this->fragmentShaderHandle); glLinkProgram(this->shaderProgram); return; } GLuint MyShaders::getShaderProgram() { return this->shaderProgram; } const char * MyShaders::getVertexShaderCode() { return this->vertexShaderCode; } const char * MyShaders::getFragmentShaderCode() { return this->fragmentShaderCode; } MyWindow.h
      #pragma once #include <glad\glad.h> #include <GLFW\glfw3.h> class MyWindow { private: GLFWwindow * windowHandle; int windowWidth; int windowHeight; const char * windowTitle; public: MyWindow(int windowWidth, int windowHeight, const char * windowTitle); ~MyWindow(); GLFWwindow * getWindowHandle(); void createWindow(); void MyWindow::destroyWindow(); }; MyWindow.cpp
      #include "MyWindow.h" MyWindow::MyWindow(int windowWidth, int windowHeight, const char * windowTitle) { this->windowHandle = NULL; this->windowWidth = windowWidth; this->windowWidth = windowWidth; this->windowHeight = windowHeight; this->windowTitle = windowTitle; glfwInit(); } MyWindow::~MyWindow() { } GLFWwindow * MyWindow::getWindowHandle() { return this->windowHandle; } void MyWindow::createWindow() { // Use OpenGL 3.3 and GLSL 3.3 glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3); glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3); // Limit backwards compatibility glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE); glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE); // Prevent resizing window glfwWindowHint(GLFW_RESIZABLE, GL_FALSE); // Create window this->windowHandle = glfwCreateWindow(this->windowWidth, this->windowHeight, this->windowTitle, NULL, NULL); glfwMakeContextCurrent(this->windowHandle); } void MyWindow::destroyWindow() { glfwTerminate(); } MyShapes.h
      #pragma once #include <glad\glad.h> #include <GLFW\glfw3.h> class MyShapes { public: MyShapes(); ~MyShapes(); GLuint & drawTriangle(float coordinates[]); }; MyShapes.cpp
      #include "MyShapes.h" MyShapes::MyShapes() { } MyShapes::~MyShapes() { } GLuint & MyShapes::drawTriangle(float coordinates[]) { GLuint vertexBufferObject{}; GLuint vertexArrayObject{}; // Create a VAO glGenVertexArrays(1, &vertexArrayObject); glBindVertexArray(vertexArrayObject); // Send vertices to the GPU glGenBuffers(1, &vertexBufferObject); glBindBuffer(GL_ARRAY_BUFFER, vertexBufferObject); glBufferData(GL_ARRAY_BUFFER, sizeof(coordinates), coordinates, GL_STATIC_DRAW); // Dertermine the interpretation of the array buffer glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3*sizeof(float), (void *)0); glEnableVertexAttribArray(0); // Unbind the buffers glBindBuffer(GL_ARRAY_BUFFER, 0); glBindVertexArray(0); return vertexArrayObject; } MyFileHandler.h
      #pragma once #include <cstdio> #include <cstdlib> class MyFileHandler { private: const char * fileName; unsigned long fileSize; void setFileSize(); public: MyFileHandler(const char * fileName); ~MyFileHandler(); unsigned long getFileSize(); const char * readFile(); }; MyFileHandler.cpp
      #include "MyFileHandler.h" MyFileHandler::MyFileHandler(const char * fileName) { this->fileName = fileName; this->setFileSize(); } MyFileHandler::~MyFileHandler() { } void MyFileHandler::setFileSize() { FILE * fileHandle = NULL; fopen_s(&fileHandle, this->fileName, "rb"); fseek(fileHandle, 0L, SEEK_END); this->fileSize = ftell(fileHandle); rewind(fileHandle); fclose(fileHandle); return; } unsigned long MyFileHandler::getFileSize() { return (this->fileSize); } const char * MyFileHandler::readFile() { char * buffer = (char *)malloc((this->fileSize)+1); FILE * fileHandle = NULL; fopen_s(&fileHandle, this->fileName, "rb"); fread(buffer, this->fileSize, sizeof(char), fileHandle); fclose(fileHandle); buffer[this->fileSize] = '\0'; return buffer; } VertexShader.glsl
      #version 330 core layout (location = 0) vec3 VertexPositions; void main() { gl_Position = vec4(VertexPositions, 1.0f); } FragmentShader.glsl
      #version 330 core out vec4 FragmentColor; void main() { FragmentColor = vec4(1.0f, 0.0f, 0.0f, 1.0f); } I am attempting to create a simple engine/graphics utility using some object-oriented paradigms. My first goal is to get some output from my engine, namely, a simple red triangle.
      For this goal, the MyShapes class will be responsible for defining shapes such as triangles, polygons etc. Currently, there is only a drawTriangle() method implemented, because I first wanted to see whether it works or not before attempting to code other shape drawing methods.
      The constructor of the MyEngine class creates a GLFW window (GLAD is also initialized here to load all OpenGL functionality), and the myEngine.run() method in Main.cpp is responsible for firing up the engine. In this run() method, the shaders get loaded from files via the help of my FileHandler class. The vertices for the triangle are processed by the myShapes.drawTriangle() method where a vertex array object, a vertex buffer object and vertrex attributes are set for this purpose.
      The while loop in the run() method should be outputting me the desired red triangle, but all I get is a grey window area. Why?
      Note: The shaders are compiling and linking without any errors.
      (Note: I am aware that this code is not using any good software engineering practices (e.g. exceptions, error handling). I am planning to implement them later, once I get the hang of OpenGL.)

       
    • By KarimIO
      EDIT: I thought this was restricted to Attribute-Created GL contexts, but it isn't, so I rewrote the post.
      Hey guys, whenever I call SwapBuffers(hDC), I get a crash, and I get a "Too many posts were made to a semaphore." from Windows as I call SwapBuffers. What could be the cause of this?
      Update: No crash occurs if I don't draw, just clear and swap.
      static PIXELFORMATDESCRIPTOR pfd = // pfd Tells Windows How We Want Things To Be { sizeof(PIXELFORMATDESCRIPTOR), // Size Of This Pixel Format Descriptor 1, // Version Number PFD_DRAW_TO_WINDOW | // Format Must Support Window PFD_SUPPORT_OPENGL | // Format Must Support OpenGL PFD_DOUBLEBUFFER, // Must Support Double Buffering PFD_TYPE_RGBA, // Request An RGBA Format 32, // Select Our Color Depth 0, 0, 0, 0, 0, 0, // Color Bits Ignored 0, // No Alpha Buffer 0, // Shift Bit Ignored 0, // No Accumulation Buffer 0, 0, 0, 0, // Accumulation Bits Ignored 24, // 24Bit Z-Buffer (Depth Buffer) 0, // No Stencil Buffer 0, // No Auxiliary Buffer PFD_MAIN_PLANE, // Main Drawing Layer 0, // Reserved 0, 0, 0 // Layer Masks Ignored }; if (!(hDC = GetDC(windowHandle))) return false; unsigned int PixelFormat; if (!(PixelFormat = ChoosePixelFormat(hDC, &pfd))) return false; if (!SetPixelFormat(hDC, PixelFormat, &pfd)) return false; hRC = wglCreateContext(hDC); if (!hRC) { std::cout << "wglCreateContext Failed!\n"; return false; } if (wglMakeCurrent(hDC, hRC) == NULL) { std::cout << "Make Context Current Second Failed!\n"; return false; } ... // OGL Buffer Initialization glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT); glBindVertexArray(vao); glUseProgram(myprogram); glDrawElements(GL_TRIANGLES, indexCount, GL_UNSIGNED_SHORT, (void *)indexStart); SwapBuffers(GetDC(window_handle));  
    • By Tchom
      Hey devs!
       
      I've been working on a OpenGL ES 2.0 android engine and I have begun implementing some simple (point) lighting. I had something fairly simple working, so I tried to get fancy and added color-tinting light. And it works great... with only one or two lights. Any more than that, the application drops about 15 frames per light added (my ideal is at least 4 or 5). I know implementing lighting is expensive, I just didn't think it was that expensive. I'm fairly new to the world of OpenGL and GLSL, so there is a good chance I've written some crappy shader code. If anyone had any feedback or tips on how I can optimize this code, please let me know.
       
      Vertex Shader
      uniform mat4 u_MVPMatrix; uniform mat4 u_MVMatrix; attribute vec4 a_Position; attribute vec3 a_Normal; attribute vec2 a_TexCoordinate; varying vec3 v_Position; varying vec3 v_Normal; varying vec2 v_TexCoordinate; void main() { v_Position = vec3(u_MVMatrix * a_Position); v_TexCoordinate = a_TexCoordinate; v_Normal = vec3(u_MVMatrix * vec4(a_Normal, 0.0)); gl_Position = u_MVPMatrix * a_Position; } Fragment Shader
      precision mediump float; uniform vec4 u_LightPos["+numLights+"]; uniform vec4 u_LightColours["+numLights+"]; uniform float u_LightPower["+numLights+"]; uniform sampler2D u_Texture; varying vec3 v_Position; varying vec3 v_Normal; varying vec2 v_TexCoordinate; void main() { gl_FragColor = (texture2D(u_Texture, v_TexCoordinate)); float diffuse = 0.0; vec4 colourSum = vec4(1.0); for (int i = 0; i < "+numLights+"; i++) { vec3 toPointLight = vec3(u_LightPos[i]); float distance = length(toPointLight - v_Position); vec3 lightVector = normalize(toPointLight - v_Position); float diffuseDiff = 0.0; // The diffuse difference contributed from current light diffuseDiff = max(dot(v_Normal, lightVector), 0.0); diffuseDiff = diffuseDiff * (1.0 / (1.0 + ((1.0-u_LightPower[i])* distance * distance))); //Determine attenuatio diffuse += diffuseDiff; gl_FragColor.rgb *= vec3(1.0) / ((vec3(1.0) + ((vec3(1.0) - vec3(u_LightColours[i]))*diffuseDiff))); //The expensive part } diffuse += 0.1; //Add ambient light gl_FragColor.rgb *= diffuse; } Am I making any rookie mistakes? Or am I just being unrealistic about what I can do? Thanks in advance
    • By yahiko00
      Hi,
      Not sure to post at the right place, if not, please forgive me...
      For a game project I am working on, I would like to implement a 2D starfield as a background.
      I do not want to deal with static tiles, since I plan to slowly animate the starfield. So, I am trying to figure out how to generate a random starfield for the entire map.
      I feel that using a uniform distribution for the stars will not do the trick. Instead I would like something similar to the screenshot below, taken from the game Star Wars: Empire At War (all credits to Lucasfilm, Disney, and so on...).

      Is there someone who could have an idea of a distribution which could result in such a starfield?
      Any insight would be appreciated
  • Popular Now