• Announcements

    • khawk

      Download the Game Design and Indie Game Marketing Freebook   07/19/17

      GameDev.net and CRC Press have teamed up to bring a free ebook of content curated from top titles published by CRC Press. The freebook, Practices of Game Design & Indie Game Marketing, includes chapters from The Art of Game Design: A Book of Lenses, A Practical Guide to Indie Game Marketing, and An Architectural Approach to Level Design. The GameDev.net FreeBook is relevant to game designers, developers, and those interested in learning more about the challenges in game development. We know game development can be a tough discipline and business, so we picked several chapters from CRC Press titles that we thought would be of interest to you, the GameDev.net audience, in your journey to design, develop, and market your next game. The free ebook is available through CRC Press by clicking here. The Curated Books The Art of Game Design: A Book of Lenses, Second Edition, by Jesse Schell Presents 100+ sets of questions, or different lenses, for viewing a game’s design, encompassing diverse fields such as psychology, architecture, music, film, software engineering, theme park design, mathematics, anthropology, and more. Written by one of the world's top game designers, this book describes the deepest and most fundamental principles of game design, demonstrating how tactics used in board, card, and athletic games also work in video games. It provides practical instruction on creating world-class games that will be played again and again. View it here. A Practical Guide to Indie Game Marketing, by Joel Dreskin Marketing is an essential but too frequently overlooked or minimized component of the release plan for indie games. A Practical Guide to Indie Game Marketing provides you with the tools needed to build visibility and sell your indie games. With special focus on those developers with small budgets and limited staff and resources, this book is packed with tangible recommendations and techniques that you can put to use immediately. As a seasoned professional of the indie game arena, author Joel Dreskin gives you insight into practical, real-world experiences of marketing numerous successful games and also provides stories of the failures. View it here. An Architectural Approach to Level Design This is one of the first books to integrate architectural and spatial design theory with the field of level design. The book presents architectural techniques and theories for level designers to use in their own work. It connects architecture and level design in different ways that address the practical elements of how designers construct space and the experiential elements of how and why humans interact with this space. Throughout the text, readers learn skills for spatial layout, evoking emotion through gamespaces, and creating better levels through architectural theory. View it here. Learn more and download the ebook by clicking here. Did you know? GameDev.net and CRC Press also recently teamed up to bring GDNet+ Members up to a 20% discount on all CRC Press books. Learn more about this and other benefits here.
Sign in to follow this  
Followers 0
sobeit

Optimization on collision detection between oriented bounding box

6 posts in this topic

Hi there, 

 

I want to check out with your guys see if my thought is right on the optimization of collision detection of OBB.

Since I'm using separating axis theorem, so the axes I need to test on include normals of very faces of each OBB, and vectors generated by a cross product of two edges, one from each OBB. My thought is that since every box has 3 pairs of parallel faces, so I can reduce the number of separating axes from each box from 6 to 3. And all edges of a box are only in 2 directions, can I reduce the number of the second type separating axis to 4?

 

Am I right? Is there any other optimization?

 

Thanks  in advance.

0

Share this post


Link to post
Share on other sites

In 2D:

Here 4 axes are correct. You only need to test the two distinct face normals of each box.

 

In 3D:

You have three distinct face directions one ach box and you need to test each of these -> 2 x 3 = 6 axes

You have three distinct edge directions on each box and you need to test each combination -> 3 x 3 = 9 axes

So for a SAT between two OBB you need to test a total of 15 axes

 

I recommend looking at Christer Ericson and Gino v.d. Bergen books. They deal with this topic in detail and also explain numerical issues.

 

HTH,

-Dirk

Edited by Dirk Gregorius
0

Share this post


Link to post
Share on other sites

In 2D:

Here 4 axes are correct. You only need to test the two distinct face normals of each box.

 

In 3D:

You have three distinct face directions one ach box and you need to test each of these -> 2 x 3 = 6 axes

You have three distinct edge directions on each box and you need to test each combination -> 3 x 3 = 9 axes

So for a SAT between two OBB you need to test a total of 15 axes

 

I recommend looking at Christer Ericson and Gino v.d. Bergen books. They deal with this topic in detail and also explain numerical issues.

 

HTH,

-Dirk

Thanks, I'm afraid I can't afford the book right now. Do you know any method could generate the contact information after detecting collision?

0

Share this post


Link to post
Share on other sites

You test all axes and keep track of the maximum separation. If the maximum is negative (e.g. the objects are penetrating) this is called the axis of minimum penetration.

 

1) The axis of minimum penetration is associated with a face: Let's call the face of this axis the reference face. Now find the most anti-parallel face on the other box. We call this face the incident face. Finally clip the incident face against the side planes of the reference face and keep all points below the reference face.

 

2) The axis of minimum penetration is associated with two edges: Compute the closest points between the two edges and use the average point

 

If you look for a good implementation of this I recommend looking at dBoxBox() in the ODE. 

 

If you are interested in these things I recommend looking into all the presentations here: https://code.google.com/p/box2d/downloads/list

You will find good presentations about collision detection and constraint solving.

 

 

HTH,

-Dirk

0

Share this post


Link to post
Share on other sites


If you look for a good implementation of this I recommend looking at dBoxBox() in the ODE. 

 

as you suggested, I looked into dboxbox.cpp. But i have trouble understanding it. could you help me out, thanks.

dMultiply1_331 (pp,R1,p);		// get pp = p relative to body 1

what is pp?

// Rij is R1'*R2, i.e. the relative rotation between R1 and R2
  R11 = dCalcVectorDot3_44(R1+0,R2+0); R12 = dCalcVectorDot3_44(R1+0,R2+1); R13 = dCalcVectorDot3_44(R1+0,R2+2);
  R21 = dCalcVectorDot3_44(R1+1,R2+0); R22 = dCalcVectorDot3_44(R1+1,R2+1); R23 = dCalcVectorDot3_44(R1+1,R2+2);
  R31 = dCalcVectorDot3_44(R1+2,R2+0); R32 = dCalcVectorDot3_44(R1+2,R2+1); R33 = dCalcVectorDot3_44(R1+2,R2+2);

what is Rij? does R1' mean the transposition of R1? if it is, why it uses R1 directly?

  Q11 = dFabs(R11); Q12 = dFabs(R12); Q13 = dFabs(R13);
  Q21 = dFabs(R21); Q22 = dFabs(R22); Q23 = dFabs(R23);
  Q31 = dFabs(R31); Q32 = dFabs(R32); Q33 = dFabs(R33);

Why do we need absolute value of matrix?

0

Share this post


Link to post
Share on other sites

p is the position and R is the orientation. Rij is the matrix element at row i and column j. You essentially transform the position and orientation of one box into the local space of the other. This makes one box axis aligned and simplifies the math.

 

I found this tutorial. Maybe this is helpful:

http://www.jkh.me/files/tutorials/Separating%20Axis%20Theorem%20for%20Oriented%20Bounding%20Boxes.pdf

0

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!


Register a new account

Sign in

Already have an account? Sign in here.


Sign In Now
Sign in to follow this  
Followers 0