• Announcements

    • khawk

      Download the Game Design and Indie Game Marketing Freebook   07/19/17

      GameDev.net and CRC Press have teamed up to bring a free ebook of content curated from top titles published by CRC Press. The freebook, Practices of Game Design & Indie Game Marketing, includes chapters from The Art of Game Design: A Book of Lenses, A Practical Guide to Indie Game Marketing, and An Architectural Approach to Level Design. The GameDev.net FreeBook is relevant to game designers, developers, and those interested in learning more about the challenges in game development. We know game development can be a tough discipline and business, so we picked several chapters from CRC Press titles that we thought would be of interest to you, the GameDev.net audience, in your journey to design, develop, and market your next game. The free ebook is available through CRC Press by clicking here. The Curated Books The Art of Game Design: A Book of Lenses, Second Edition, by Jesse Schell Presents 100+ sets of questions, or different lenses, for viewing a game’s design, encompassing diverse fields such as psychology, architecture, music, film, software engineering, theme park design, mathematics, anthropology, and more. Written by one of the world's top game designers, this book describes the deepest and most fundamental principles of game design, demonstrating how tactics used in board, card, and athletic games also work in video games. It provides practical instruction on creating world-class games that will be played again and again. View it here. A Practical Guide to Indie Game Marketing, by Joel Dreskin Marketing is an essential but too frequently overlooked or minimized component of the release plan for indie games. A Practical Guide to Indie Game Marketing provides you with the tools needed to build visibility and sell your indie games. With special focus on those developers with small budgets and limited staff and resources, this book is packed with tangible recommendations and techniques that you can put to use immediately. As a seasoned professional of the indie game arena, author Joel Dreskin gives you insight into practical, real-world experiences of marketing numerous successful games and also provides stories of the failures. View it here. An Architectural Approach to Level Design This is one of the first books to integrate architectural and spatial design theory with the field of level design. The book presents architectural techniques and theories for level designers to use in their own work. It connects architecture and level design in different ways that address the practical elements of how designers construct space and the experiential elements of how and why humans interact with this space. Throughout the text, readers learn skills for spatial layout, evoking emotion through gamespaces, and creating better levels through architectural theory. View it here. Learn more and download the ebook by clicking here. Did you know? GameDev.net and CRC Press also recently teamed up to bring GDNet+ Members up to a 20% discount on all CRC Press books. Learn more about this and other benefits here.
Sign in to follow this  
Followers 0
Reitano

Square <-> hemisphere mapping

7 posts in this topic

Hi

 

I am looking for a mapping (and its inverse) between a square and a hemisphere. I need it to store samples of a hemispherical function (the sky colour) in a 2D texture, which I can then fetch in shaders. The requirements are:

 

- shader-efficient inverse mapping from the hemisphere to the square (in other words, conversion of a 3D direction to U,V coordinates)

- the mapping should allow some control on the sample distribution. In my case I need more samples near the horizon where the sky colour changes quickly

 

I've done some research these days but could not find anything suitable yet. Most projections use polar coordinates and have costly inverse mappings in terms of ALU (due to atan2, acos functions). I have code for mapping normal vectors to two coordinates for deferred rendering but in that case I cannot control the sample distribution.

 

Perhaps I could use a cylindrical projection with a cheap approximation to atan2 if one exists ?! Any ideas are much appreciated.

 

Thanks,

 

Stefano

 

 

0

Share this post


Link to post
Share on other sites

You can map the square [-1,1]x[-1,1] to the unit disk like this:

  F(x,y) = (x/d,y/d), where d is the distance from the origin to the edge of the square along the direction (x,y)

  d = sqrt(1 + min(abs(x/y),abs(y/x))^2)

 

Now you can imagine the resulting disk as being in the x-y plane in 3D. Place the hemisphere on top of it and place a point P at (0,0,-w). Use the point P to project from the disk to the hemisphere (meaning, start with a point on the disk, draw the line that joins that point with P and find the intersection of that line with the hemisphere).

 

The number w controls the density of points near the horizon (small w means lots of resolution near the horizon).

1

Share this post


Link to post
Share on other sites

Lots of methods work in either spherical coordinates or Cartesian coordinates, meaning you can implement them with trig, or without.

These all map the sphere to a 2D circle.

http://en.wikipedia.org/wiki/Stereographic_projection

http://en.wikipedia.org/wiki/Sphere_mapping

http://www.opengl.org/archives/resources/code/samples/sig99/advanced99/notes/node177.html (another kind of sphere mapping).

 

If you want to use up the corner space, you could then remap the circle to a square.

There's an article here for mapping a circle to a square, and someone's posted a comment with the inverse:

http://mathproofs.blogspot.com.au/2005/07/mapping-square-to-circle.html

 

I haven't tried it, but you should be able to focus the precision to either the centre or the edges with some code like this:

uv = uv*2-1            // remap from 0-1 to -1 to 1
s = sign(uv)           // pow will destroy the sign, remember it here
uv = pow( abs(uv), x ) // pinch (x>1) or bulge (0<x<1)
uv = uv*sign*0.5+0.5   // remap back to 0-1 range
Edited by Hodgman
0

Share this post


Link to post
Share on other sites

Lots of ideas to experiment with. Another option that I should have considered right from the start is the dual paraboloid mapping:

http://www.cs.ubc.ca/~heidrich/Papers/GH.98.pdf

The mapping and its reverse are trivial. I might be able to control the sampling distribution by manipulating the UV space, as suggested by Hodgman. About that, a fixed odd exponent (e.g. 3) would simplify the ALU by removing the sign and abs instructions.

 

@tonemgub: I should have mentioned that I am going to update the map every frame (either on CPU or GPU) and a cubemap likely has a higher cost than a single texture although I haven't tested it. And, apart from this use case, I am interested in this problem from a mathematical point of view.

2

Share this post


Link to post
Share on other sites

An update: a paraboloid mapping solves this problem brilliantly. In order to bias the sample distribution near the horizon, I apply an exponent to the sampling direction Z component. For a typical sky, the sampled representation closely matches the original one, and objects far from the camera blend well with the sky. If anyone is interested I can post here some formulas and pseudo-code.

1

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!


Register a new account

Sign in

Already have an account? Sign in here.


Sign In Now
Sign in to follow this  
Followers 0